반대로, 음이 아닌 어떤 실수 에 대해서 이 "분배법칙"이 적용되면 집합은 볼록이다.[4]
그림은 A + A ⊋ 2A인 비볼록 집합의 예시를 보여준다.
A + A ≠ 2A인 비볼록 집합의 예시
1차원의 예시: B=[1,2]∪[4,5]. 이것은 쉽게 2B=[2,4]∪[8,10]이지만 B+B=[2,4]∪[5,7]∪[8,10]인 것을 계산할 수 있다. 따라서, 역시 B+B ⊋ 2B이다.
민코프스키 덧셈은 이차원 볼록체의 둘레에서 선형적으로 작용한다: 덧셈의 둘레는 둘레의 합과 같다. 게다가, K가 정폭도형(의 내부)이면, K와 그것을 180°돌린 도형의 민코프스키 덧셈은 원판이다. 이 두 사실을 결합하면 정폭도형의 둘레에서 바르비에의 정리의 간략하게 증명할 수 있다.[5]
민코프스키 덧셈은 장애물 사이로 지나는 모션 계획에서 사용된다. 이것은 물체의 모든 허용 가능한 집합인 짜임새 공간의 계산에 사용된다. 물체의 위치가 이 물체의 고정점에 의해서 유일하게 결정되는 평면에서 물체의 평행이동 모션의 가장 단순한 모델에서, 짜임새 공간은 장애물의 집합과 움직이는 물체를 원점에 둬서 180도 돌린 것의 민코프스키 덧셈이다.
수치 제어 (NC) 가공
수치 제어 가공에서, NC 툴의 프로그래밍은 깎는 조각과 그 궤적의 민코프스키 덧셈은 물체에서 깎는 모양을 준다는 사실을 이용한다.
3d 솔리드 모델링
오픈SCAD에서 민코프스키 덧셈은 한 도형과 두 도형의 복합체를 만드는 다른 도형의 윤곽선을 그릴 때 이용된다.
집계 이론
민코프스키 덧셈은 집계 이론에서 집계된 각각의 물체가 집합으로 특정될 경우에 종종 사용된다.[6][7]
민코프스키 덧셈을 계산하는 알고리즘
민코프스키 덧셈과 볼록 폐포. 빨간 점의 쌍으로 이루어진 (왼쪽에 있는) 비볼록 집합 네 개의 덧셈으로 생긴 (오른쪽에 있는) 16개의 진한 빨간색 점. (분홍색으로 칠해진) 볼록 폐포는 더하기 기호 (+)를 포함한다: 오른쪽 더하기 기호는 왼쪽 더하기 기호의 덧셈이다.
평면의 경우
평면의 볼록 다각형 두 개
꼭짓점이 각각 m개와 n개인 평면의 볼록 다각형 P와 Q에 대해서, 그 민코프스키 합은 최대 m + n개의 꼭짓점이 있는 볼록 다각형이고 비공식적인 다음의 매우 간단한 단계로 시간 O (m + n)에 계산할 수 있다. 다각형의 모서리와 다각형 경계의 방향 (말하자면 반시계 방향 같은)이 주어졌다고 가정하자. 그러면 쉽게 이 볼록 다각형의 변이 중심각 순서대로 있다는 것을 볼 수 있다. 정렬된 유향 변의 수열 P와 Q를 하나의 정렬된 수열 S으로 병합하자. 이 변들이 원래 방향에 평행하게 유지하면서 자유롭게 움직일 수 있는 고체 화살표라고 생각하자. 화살표들을 다음 화살표의 꼬리를 이전 화살표의 머리에 붙여서 수열 S의 순서대로 조합하자. 이 결과로 나오는 다각형 체인이 사실은 P와 Q의 민코프스키 합인 볼록 다각형이라는 것을 알 수 있다.
기타
한 다각형이 볼록이고 다른 것은 아니라면, 그 민코프스키 덧셈의 완비성은 O(nm)이다. 둘 다 비볼록이라면, 그 민코프스키 덧셈의 완비성은 O((mn)2)이다.
본질적 민코프스키 덧셈
유클리드 공간의 두 부분집합의 본질적 민코프스키 덧셈의 표기 +e가 있다. 일반적인 민코프스키 덧셈은 다음과 같이 적는다는 것을 주목하자:
따라서, 본질적 민코프스키 덧셈은 다음과 같이 정의된다:
여기서 μ는 n-차원 르베그 측도를 의미한다. "본질적"이라는 용어를 쓰는 이유는 지시 함수의 다음 특성 때문이다: 다음일 때
↑Hadwiger, Hugo (1950), “Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt”, 《Math.Z.》 53 (3): 210–218
↑Theorem 3 (pages 562–563): Krein, M.; Šmulian, V. (1940). “On regularly convex sets in the space conjugate to a Banach space”. 《Annals of Mathematics (2), Second series》 41. 556–583면. doi:10.2307/1968735. JSTOR1968735. MR2009.
↑민코프스키 덧셈과 볼록 폐포화의 가환성에 대해서는, Schneider에서 Theorem 1.1.2 (pages 2–3)를 보라; 이 참고 문헌은 민코프스키 덧셈집합의 볼록 폐포에 대한 문헌들을 "Chapter 3 Minkowski addition" (pages 126–196)에서 논의한다: Schneider, Rolf (1993). 《Convex bodies: The Brunn–Minkowski theory》. Encyclopedia of mathematics and its applications 44. Cambridge: Cambridge University Press. xiv+490쪽. ISBN0-521-35220-7. MR1216521.
↑Chapter 1: Schneider, Rolf (1993). 《Convex bodies: The Brunn–Minkowski theory》. Encyclopedia of mathematics and its applications 44. Cambridge: Cambridge University Press. xiv+490쪽. ISBN0-521-35220-7. MR1216521.