수학기초론수학기초론(Foundations of mathematics)은 수학의 분야들 중 수리논리학과 공리적 집합론, 모형 이론, 증명 이론 및 계산 가능성 이론 등을 가리키는 말이다. 수학의 기초를 찾는 것은 근본적인 의미에서 수학적 명제가 옳다고 말할 수 있는 근거가 무엇인지를 연구하는 것이며, 이는 수리철학의 중심 과제이다. 역사수학은 고대부터 다른 학문에서의 엄밀함을 확인하는 도구가 되었는데, 19세기 중엽부터 수학 체계 자체내에서 더욱 엄밀한 논리체계가 요구되었고, 그 결과 리하르트 데데킨트의 실수론과 게오르크 칸토어의 집합론이 나왔다. 그러나 1901년 버트런드 러셀이 칸토어가 정의한 집합론에서 역설을 발견하였다. 이것을 계기로 수학자들은 수학의 논리체계를 반성하고 수학의 기초를 비판하였으며, 이로써 수학기초론이 생겨났다. 러셀이 제기한 역설을 해결하여 수학의 안정성을 보증하는 이론이 바로 수학기초론이라 할 수 있다. 수학기초론은 언어(유의미한 수학적 명제를 만들기 위해서 정확한 수학적 언어를 말해야 한다)를 형식화하고, 분석하는 방법, 공리(증명 없이 참임을 인정한 명제), 모든 수학 연구에서의 논리적인 방법 개발을 포함한다. 수학기초론의 기본 수학 개념으로는 수, 도형, 집합, 함수, 알고리즘, 공리, 정의, 정리가 있다. 같이 보기
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia