호몰로지 대수학호몰로지 대수학(homology代數學, 영어: homological algebra)이란 수학의 한 분야로 대수적 위상수학에서 비롯된 호몰로지와 코호몰로지를 더 일반적인 상황에서 연구하는 것을 말한다. 호몰로지 대수는 주로 아벨 범주에 정의된 완전열을 다룬다. 이는 실제 계산을 할 때 중요하게 쓰인다. 유도 함자는 호몰로지 대수학에서 중심적인 역할을 하는데, 기본적인 예로는 Ext 함자와 Tor 함자가 있다. 또한, 스펙트럼 열과 유도 범주도 호몰로지 대수학에 속한다. 응용호몰로지 대수학은 대수적 위상수학에서 비롯되었고, 이 분야에서 매우 중요한 역할을 한다. 또한, 위상 공간 말고도 층, 군, 환, 리 대수를 비롯한 수학의 여러 분야에서 나타나는 대상들에 대해, 호몰로지 대수학은 호몰로지와 코호몰로지를 정의하는 데 중요한 역할을 한다. 특히 층 코호몰로지가 없다면 현대 대수기하학의 연구는 거의 불가능할 것이다. 같이 보기참고 문헌
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia