Оваа страница (или пасус) не е напишана на јазик којшто е македонски. Ако е наменета за читателите од тој јазик, треба да биде преместена на јазичното издание на Википедија на тој јазик. Видете го целосниот список на јазични изданија.
Ако страницата (или пасусот) не е преведена на македонски во рок од една седмица, содржината која е на друг јазик ќе биде избришана.
Слично како и кај електромагнетните полиња кои се одредени користејќи полнеж и Електрична струја преку Максвеловите равенки, АРП се користи да се одреди време-просторот како резултат од присуството на маса-енергија и линеарен момент ,т.е тие го одредуваат метричкиот тенсор на времепросторот за дадена енергија во времепросторот. Врската помеѓу Метричкиот тенсор и Ајнштајновиот тенсор дозволува АРП да биде напишан како збирнелинеарни парцијално диференцирани равенки користејќи ги на овој начин. Решенијата на ЕФЕ се компненти на метричкиот тенсор.
Истите решенија за ЕФЕ може да бидат најдени само во упростувања на претпоставки, како симетрија. Специјални класи на идентични решенија се многу често проучувани бидејќи покажуваат многу гравитациски феномени, како на пример вртежни црни дупки и ширењето на вселената. Понатамошн упростувањa се достигнуваa со изедначување на времепросторот како рамен време-простор со мала девиација, водејќи до линеаризирани АРП. Овие равенки се користат за проучување феномени какп гравитациски бранови.
Иако Ајнштајновите равенки за поле првично биле формулирани во контекст на 4 димензионална теорија, некои теоретичари ги истражувале последиците на н димензиите. Равенките кои се надвор од општата релативност сè уште се поврзуваат со Ајнштајновите равенки за поле. Вакуумско поле равенки (овозможени кога T е еднакво на 0) го дефинираат Ајнштајновиот манифолд.
Занемарувајќи го лесниот,првичен изглед на равенките,тие се комплицирани. Зададен специфичен придонес од маса и енергија во форма на стрес-енергетски тенсор,ЕФЕ се подразбира да е равенки за метрички тенсор , како Рицов тенсор и скаларно искривување во зависност од метричноста е комплициран нелинеарен проблем.
Едниот може да го пишува ЕФЕ во компактна форма со дефинирање на Ајнштајновиот тенсор
кој е симетричен втор ранк тенсор. ЕФЕ може да биде запишан како:
Во стандардните единици, секој термин од лево има единица од 1 / должина2. Со овој избор на Ајнштајновата константа како 8πG / c4, тогаш стрес-енергетскиот тензор на десната страна на равенката мора да биде напишан со секоја компонента во единиците на енергетската густина (односно, енергијата по волумен = притисок).
Изразот лево ја претставува кривината на време-просторот како што е одредено од метриката; изразот од десната страна ја претставува содржината на материјата / енергијата во просторот. ЕФЕ потоа може да се толкува како збир на равенки што диктираат како материјата / енергијата ја одредува заобленоста на времето во време-просторот.
Овие равенки, заедно со геодетската равенка, која диктира како слободното паѓање на материјата се движи низ време-просторот, го формираат јадрото на математичката формулација на општата теорија на релативноста.
Значно означување
Горе наведената форма на ЕФЕ е стандардна и воспоставена од Мизнер, Торн и Вилер.[5] Авторите ги анализирале сите конвенции што постоеле и ги класифицирале според три знаци (S1, S2, S3):
Третиот знак горе е поврзан со изборот на конвенција за Рицовиот тенсор:
Со овие дефиниции Мизнер, Торн и Вилер се класифицираат самите како , каде што Вајнберг (1972)[6] е , Пебелс (1980) и Ефстатиу (1990) (− + +) , Collins Martin & Squires (1989) се .
Автори,вклучувајќи го и Ајнштајн употребувале различен знак за нивната дефиниција за Рицовиот тенсор што резултирало во знакот во константата да има промена на десната страна знакот да биде негативен
Знакот за (многу мал) космолошкиот термин би се сменил и во двете верзии,ако +−−− метрично конвенцијата знак се претпочита MTW −+++ метричкот знак настанат тука.
Бидејќи е константа, законот за енергија не е манифестиран со оваа промена.
Космолошка константа како термник првично била објаснета од Ајнштајн за да докаже дека универзумот не се шири. Но,ефортот бил неуспешен поради:
Универзумот објаснет преку оваа теорија бил нестабилен, и
обзервацијата од Edwin Hubble докажала дека универзумот се шири.
Значи, Ајнштајн го напуштил Λ, нарекувајќи го „ајголемата грешка некогаш направена“
И покрај мотивите на Ајнштајн за воведување на космолошки константен термин, не постои ништо во спротивност со присуството на таков термин во равенките. Космолошката константа за многу години беше скоро универзално прифатена како 0. Сепак, неодамнешните подобрени астрономски техники открија дека е потребна позитивна вредност на Λ за да се објасни забрзувачкиот универзум.
Ајнштајн мислел на космолошката константа како независен параметар, но нејзиниот поим во равенката на полето, исто така, може алгебарски да се премести на другата страна, напишан како дел од тензорот на тензијата со енергија:
The definitions of the Ricci curvature tensor and the scalar curvature then show that
which can be rewritten as
A final contraction with gives
which by the symmetry of the bracketed term and the definition of the Einstein tensor, gives, after relabelling the indices,
Using the EFE, this immediately gives,
кој ја изразува локалната конзервација на стрес-енергија. Овој закон за зачувување е физички услов. Со неговите равенки на полето, Ајнштајн обезбедил општата релативност да е во согласност со оваа конзерваторска состојба.
ЕФЕ се сведува на законот за гравитација на Њутн, користејќи ја приближувањето на слабото поле и апроксимацијата со бавно движење. Всушност, константата G која се појавува во ЕФЕ се определува со овие две приближувања.
Изведување на Њутновиот закон за гравитација
Newtonian gravitation can be written as the theory of a scalar field, , which is the gravitational potential in joules per kilogram
where is the mass density. The orbit of a free-falling particle satisfies
In tensor notation, these become
In general relativity, these equations are replaced by the Einstein field equations in the trace-reversed form
To see how the latter reduce to the former, we assume that the test particle's velocity is approximately zero
and thus
and that the metric and its derivatives are approximately static and that the squares of deviations from the Minkowski metric are negligible. Applying these simplifying assumptions to the spatial components of the geodesic equation gives
where two factors of have been divided out. This will reduce to its Newtonian counterpart, provided
Our assumptions force α=i and the time (0) derivatives to be zero. So this simplifies to
which is satisfied by letting
Turning to the Einstein equations, we only need the time-time component
the low speed and static field assumptions imply that
So
and thus
From the definition of the Ricci tensor
Our simplifying assumptions make the squares of Γ disappear together with the time derivatives
Combining the above equations together
which reduces to the Newtonian field equation provided
which will occur if
Равенки на полето во вакуум
Швајцарска комеморативна монета од 1979 година, која ги покажува вакуумските равенки со нула космолошка константа (горе).
Ако тензорот на енергетскиот импулс е нула во подрачјето што се разгледува, тогаш равенките на полето исто така се нарекуваат равенки на полето во вакуум во равенките обратни на полето , вакуум равенките може да се пишуваат како:
Во случај на нула-космолошка константа, равенките се
.
Решенијата за вакуумските равенки се нарекуваат вакуумски решенија. Минковскиот простор наједноставен пример за вакуумско решение. Нетривиални примери вклучуваат решение на Шварцшилд и решение Кер.
Манифестали со тензично исчезнатиот Риччи, ,се нарекуваат Рикки-рамни колекции и размери со тензорот на Ричи, пропорционален на метриката како Ајнштајн-манифолдери.
Ако тензорот на енергетскиот импулс е оној на електромагнетно поле во слободен простор, односно ако електромагнетни тензор-тензии
се користи, тогаш Ајнштајнските поле равенки се нарекуваат равенки Ејнштајн-Максвел (со космолошка константа Λ, земени како нула во конвенционалната теорија на релативноста):
каде што точка-запирка претставува коваријантен дериват, а загради означуваат антисимметризација. Првата равенка тврди дека 4-дивергенцијата на дво-форма F е нула, а втората дека нејзиниот надворешен дериват е нула. Од вторите, следува по Poincaré лемма дека во координата шема е можно да се воведе потенцијал за електромагнетно поле Aα така што
во кој запирката означува делумен дериват. Ова често се зема како еквивалент на коваријантната Максвелова равенка од која е изведена. Сепак, постојат глобални решенија на равенката која може да нема глобално дефиниран потенцијал.[7]
Решенијата на равенките на Ајнштајновото поле се метрика на време-просторот. Овие метрики ја опишуваат структурата на времетраењето на времето, вклучувајќи го инерциското движење на предметите во просторот. Бидејќи равенките на полето се нелинеарни, тие не можат секогаш да бидат целосно решени (т.е. без приближување). На пример, не постои познато комплетно решение за временско време со две масивни тела во него (на пример, теоретски модел на систем на двојни ѕвезди). Сепак, во овие случаи обично се прават приближувања. Овие се вообичаено се нарекуваат пост-њутонски приближувања. И покрај тоа, постојат бројни случаи каде што равенките на полето се решени целосно, и тие се нарекуваат точни решенија.
Студијата за точни решенија на равенките на Ајнштајн е една од активностите на космологијата. Тоа води до предвидување на црни дупки и до различни модели на еволуција на универзумот.
Исто така, може да се откријат нови решенија на равенките на Ајнштајн преку методот на ортонормални рамки како што е пионер од Елис и МакКалум. Во овој пристап, равенките за полето на Ајнштајн се сведени на множество на споени, нелинеарни, обични диференцијални равенки. Како што беше дискутирано од страна на Хсу и Вејнврајт, само слични решенија за Ајнштајновите равенки за полето се фиксни точки на добиениот динамичен систем. Новите решенија се откриени користејќи ги овие методи од ЛеБлан и Коли и Хаслам.[8]
Нелинеарноста на ЕФЕ прави тешко наоѓање на точни решенија. Еден начин за решавање на равенките на поле е да се направи апроксимација, имено, дека далеку од изворот(и) на гравитациската материја, гравитациското поле е многу слабо и време-просторот е приближно оној на Минковскиевиот простор. Тогаш метриката е напишана како збир на Минковскиевата метрика и термин кој ја претставува отстапката на вистинската метрика од Минковскиевата метрика, со термини кои се квадратни во или повисоки сили на отстапувањето се игнорираат. Оваа постапка на линеаризација може да се искористи за да се испитаат појавите на гравитациското зрачење.
Полиномна форма
Може да се мисли дека ЕФЕ се не-полиноми, бидејќи тие го содржат инверзниот на метричкиот тензор. Сепак, равенките може да бидат поставени така што тие ги содржат само метричкиот тензор, а не обратниот. Прво, детерминанта на метриката во 4 димензии може да биде напишана:
користејќи го симболот Леви-Сивита и инверзната на метриката во 4 димензии може да биде напишана како:
Заменувајќи ја оваа дефиниција на инверзна метрика во равенките, а потоа ги множи обете страни од det (g) сè додека не останат во именителот, резултатите во полиномичките равенки во метричкиот тензор и неговите први и втора деривати. Дејството од кое се изведени равенките, исто така, може да биде запишано во полиномна форма со соодветни редефиниции на полињата.[9]
↑Einstein, Albert (November 25, 1915). „Die Feldgleichungen der Gravitation“. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin: 844–847. Посетено на 2017-08-21.
↑Kohli, Ikjyot Singh and Haslam, Michael C, "Dynamical systems approach to a Bianchi type I viscous magnetohydrodynamic model", Phys. Rev. D 88, 063518 (2013)