Сначала находим любое решение . Если такого не существует, исходное уравнение не имеет примитивных решений. Без потери общности можно считать, что (если это не так, заменим r0 на m - r0, которое остаётся корнем из -d). Теперь используем алгоритм Евклида для поиска , и так далее. Останавливаемся, когда . Если является целым числом, то решением будет . В противном случае примитивного решения нет.
Для поиска непримитивных решений (x, y), где НОД(x, y) = g ≠ 1, заметим, из существования такого решения следует, что g2 делит m (и, эквивалентно, что если m является свободным от квадратов, то все решения примитивны). Тогда вышеприведённый алгоритм можно использовать для поиска примитивного решения (u, v) уравнения . Если такое решение найдено, то (gu, gv) будет решением исходного уравнения.
Пример
Решаем уравнение . Квадратный корень из −6 (mod 103) равен 32 и 103 ≡ 7 (mod 32). Поскольку и , существует решение x = 7, y = 3.
Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.