Важный подкласс замкнутых множеств образуют канонически замкнутые множества, каждое из которых является замыканием какого-либо открытого множества (и, следовательно, совпадает с замыканием своей внутренности). В каждом замкнутом множестве содержится максимальное канонически замкнутое множество — им будет замыкание внутренности множества [2].
Альтернативное определение замкнутого множества вводится с помощью последовательностей и сетей. Так, множество топологического пространства замкнуто в тогда и только тогда, когда любой предел всякой сети из также лежит в . В пространствах, удовлетворяющих первой аксиоме счётности (в том числе метрических пространствах) достаточно доказать сходимость всех последовательностей, вместо сетей. Одним из достоинств этого определения является возможность определить пространства сходимости[англ.] — обобщения топологических пространств. Стоит заметить, что такое определение зависит от окружающего пространства , так как сходимость последовательности или сети зависит от точек, содержащихся в .
Будем говорить, что точка близка к множеству , если , где означает замыкание в .
Тогда можно непосредственно определить замкнутые множества:
множество замкнуто тогда и только тогда, когда оно содержит все свои близкие точки.
В терминах сходимости сетей, точка близка к , только если существует сеть в , сходящаяся к .
Замкнутые множества можно также определить через непрерывные функции: отображение непрерывно тогда и только тогда, когда , то есть близкие точки при переводятся в близкие точки образа.
Выше, понятие замкнутого множество было дано в терминах открытых множеств, которое справедливо в контексте топологических пространств и пространств, несущих топологическую структуру.
Замкнутость множества зависит от пространства, в которое оно вложено.
Так, например, компактныехаусдорфовы пространства являются «абсолютно замкнутыми» в том смысле, что при вложении компактного хаусдорфова пространства в произвольное хаусдорфово пространство , будет всегда замкнуто в .
В этом смысле, компактификация Стоуна — Чеха может быть описана, как дополнение пространства пределами расходящихся сетей.
Замкнутые множества дают удобное определение компактности: топологическое пространство компактно тогда и только тогда, когда всякое семейство непустых замкнутых подмножеств с пустым пересечением допускает конечное подсемейство с пустым пересечением.
Связанные определения
Множества, которые одновременно являются и открытыми, и замкнутыми, называются открыто-замкнутыми.
Множества, полученные объединением счётного числа множеств называются F-сигма-множествами или .
Свойства
Замкнутое множество содержит свою границу. Это справедливо в том числе для множеств с пустой границей.
Любое пересечение счётного количества замкнутых множеств также замкнуто.
Объединение конечного количества замкнутых множеств замкнуто.
↑G. Cantor. “De la puissance des ensembles parfaits de points”. Acta Math. 4.1 (1884). Extrait d’une lettre adressée à l’éditeur, pp. 381–392.
↑Александров П. С., Пасынков В. А. Введение в теорию размерности. — М.: Наука, 1973. — 576 с. — C. 24.
Литература
Dolecki, Szymon; Mynard, Frédéric. Convergence Foundations Of Topology (англ.). — New Jersey: World Scientific Publishing Company, 2016. — ISBN 978-981-4571-52-4.