В этой же работе Гаусс доказал, что если нечётные простые делители числа n являются различными простыми Ферма (числа Ферма), то есть простыми числами вида то правильный n-угольник может быть построен с помощью циркуля и линейки (см. Теорема Гаусса — Ванцеля).
Факты
Гаусс был настолько воодушевлён своим открытием, что в конце жизни завещал, чтобы правильный семнадцатиугольник высекли на его могиле. Скульптор отказался это сделать, утверждая, что построение будет настолько сложным, что результат нельзя будет отличить от окружности.
В 1893 годуГерберт Уильям Ричмонд[англ.] опубликовал явное описание построения правильного семнадцатиугольника в 64 шагах. Ниже приводится это построение.
Построение
Точное построение
Построение правильного семнадцатиугольника
Проводим большую окружность k₁ (будущую описанную окружность семнадцатиугольника) с центром O.
Проводим её диаметр AB.
Строим к нему перпендикуляр m, пересекающий k₁ в точках C и D.
Отмечаем точку E — середину DO.
Посередине EO отмечаем точку F и проводим отрезок FA.
Строим биссектрису w₁ угла ∠OFA.
Строим w₂ — биссектрису угла между m и w₁, которая пересекает AB в точке G.
Восстанавливаем s — перпендикуляр к w₂ из точки F.
Строим w₃ — биссектрису угла между s и w₂. Она пересекает AB в точке H.
Строим окружность Фалеса (k₂) на диаметре HA с центром в точке M. Она пересекается с CD в точках J и K.
Проводим окружность k₃ с центром G через точки J и K. Она пересекается с AB в точках L и N. Здесь важно не перепутать N с M, они расположены очень близко.
Строим касательную к k₃ через N.
Точки пересечения этой касательной с исходной окружностью k₁ — это точки P₃ и P₁₄ искомого семнадцатиугольника. Если принять середину получившейся дуги за P₀ и отложить дугу P₀P₁₄ по окружности три раза, все вершины семнадцатиугольника будут построены.
Примерное построение
Следующее построение хоть и приблизительно, но гораздо более удобно.
Ставим на плоскости точку M, строим вокруг неё окружность k и проводим её диаметр AB;
Делим пополам радиус AM три раза по очереди по направлению к центру (точки C, D и E).
Делим пополам отрезок EB (точка F).
строим перпендикуляр к AB в точке F.
Вкратце: строим перпендикуляр к диаметру на расстоянии 9/16 диаметра от B.
Точки пересечения последнего перпендикуляра с окружностью являются хорошим приближением для точек P₃ и P₁₄.
При этом построении получается относительная ошибка в 0,83%. Углы и стороны получаются таким образом немного больше, чем нужно. При радиусе 332,4 мм сторона получается длиннее на 1 мм.
Анимированное построение Эрхингера
Построение семнадцатиугольника циркулем и линейкой в 64 шага по Йоханнесу Эрхингеру
Звёздчатые формы
У правильного семнадцатиугольника существуют 7 правильных звёздчатых форм.
Karin Reich. Die Entdeckung und frühe Rezeption der Konstruierbarkeit des regelmäßigen 17-Ecks und dessen geometrische Konstruktion durch Johannes Erchinger (1825). // В кн.: Mathesis, Festschrift zum siebzigsten Geburtstag von Matthias Schramm. Hrsg. von Rüdiger Thiele, Berlin, Diepholz 2000, стр. 101—118.