Сумма углов любого треугольника на евклидовой плоскости равна 180°.[1]
Доказательство
Пусть — произвольный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Что и требовалось доказать.
Следствия
В треугольнике не может быть двух тупых или двух прямых углов, потому что тогда сумма углов была бы больше 180°. По той же причине треугольник не может содержать тупой и прямой углы одновременно.
У любого треугольника не меньше двух острых углов. Действительно, случай, когда у треугольника только один острый угол или вообще нет острых углов, противоречит предыдущему следствию.
Существует более сложное соотношение между двугранными углами произвольного симплекса. А именно, если — угол между i и j гранями симплекса, то определитель следующей матрицы (являющейся циркулянтом) равен 0:
.
Это следует из того, что этот определитель является определителем Граманормалей к граням симплекса, а определитель Грама линейно зависимых векторов равен 0, и вектор в -мерном пространстве всегда линейно зависимы.
Приведённое в этой статье доказательство опирается на определённое свойство параллельных прямых, а именно — утверждение о том, что внутренние накрест лежащие углы при параллельных прямых равны. Доказательство этого утверждения, в свою очередь, использует аксиому параллельности евклидовой геометрии. Можно показать, что любое доказательство теоремы о сумме углов треугольника будет использовать аксиому параллельности, и наоборот — из утверждения, что сумма углов треугольника равна 180°, можно вывести аксиому параллельности, если даны остальные аксиомы классической геометрии (абсолютная геометрия)[3].
Таким образом, равенство суммы углов треугольника 180° является одним из основных признаков именно евклидовой геометрии, отличающих её от неевклидовых, в которых аксиома параллельности не выполняется:
На сфере сумма углов треугольника всегда превышает 180°, разница называется сферическим избытком и пропорциональна площади треугольника. У сферического треугольника могут быть два или даже три прямых или тупых угла.
Пример. Одна вершина треугольника на сфере — северный полюс. Этот угол может иметь значение до 180°. Две другие вершины лежат на экваторе, соответствующие углы равны 90°.
В геометрии Лобачевского сумма углов треугольника всегда меньше 180° и может быть сколь угодно малой. Разность также пропорциональна площади треугольника.