Треугольники Шарыгина представляют интерес, так как существуют в отличие от аналогичных треугольников, в определении которых вместо биссектрис использованы, например, медианы или высоты[4].
Произвольный треугольник Шарыгина с основными обозначениями, где .
Для любого угла такого, что , существует с точностью до подобия ровно один треугольник Шарыгина с одним из углов, равным , причём для любого треугольника Шарыгина косинус одного из его углов лежит в указанном интервале.
Пусть — треугольник Шарыгина, , и — его стороны (см. рисунок), , и — его биссектрисы, и .
Предположим, является серединным перпендикуляром к отрезку . Тогда углы и равны, а углы и также равны, так как прямая является биссектрисой угла , следовательно, по теореме о сумме углов треугольника для треугольников и углы и равны, а значит, равны и углы и , из чего следует, что треугольник равнобедненный, то есть не является треугольником Шарыгина по определению.
Итак, не является серединным перпендикуляром к отрезку . Тогда точка является пересечением биссектрисы угла и серединного перпендикуляра к отрезку , которое лежит на описанной окружности треугольника по следствию из теоремы о вписанном угле. Тогда четырёхугольник является вписанным, следовательно, , а значит, сумма углов и , как смежных к углам и соответственно, также равна .
Приложим друг к другу треугольники и по равным сторонам и соответственно. Получим треугольник, подобный треугольнику по первому признаку подобия треугольников. Нетрудно убедиться, что его стороны будут равны , и . Тогда из подобия получаем что можно переписать в виде
Подставив данное значение в равенство и разделив его на , получим квадратное уравнение на Первый и третий члены меньше нуля, а значит, средний член должен быть больше нуля. , следовательно, . Полученное уравнение имеет решения тогда и только тогда, когда его дискриминант, равный не меньше нуля, причём только одно из этих решений будет положительным. Случай, когда дискриминант равен нулю, не удовлетворяет условию , следовательно, требуется его строгая положительность.
Следовательно, треугольник Шарыгина с существует тогда и только тогда, когда выполнены следующие условия: причём для данного он всегда единственен. Эти три условия равносильны ограничениям
Кубика Шарыгина
Кубикой Шарыгина называется полученная в доказательстве выше кубика (имеющая более простой, но не удовлетворяющий формальному определению кубики вариант записи: ), задающая необходимое и достаточное условие для того, чтобы треугольник со сторонами являлся треугольником Шарыгина с равными сторонами (см. рисунок).
Конкретные примеры
Треугольник Шарыгина, образованный тремя вершинами правильного семиугольника.
На момент 2017 года известен только один пример треугольника Шарыгина, вершины которого могут являться некоторыми вершинами правильного многоугольника[4]. В данном примере вершины треугольника являются первой, второй и четвёртой вершинами правильного семиугольника[1].
Доказательство
Пусть — вершины правильного -угольника, а — наш треугольник, вершины которого являются также вершинами правильного -угольника. Обозначим вершины треугольника, образованного основаниями биссектрис , через (см. рисунок). Докажем, что .
По свойству биссектрисы вписанного угла биссектрисы проходят через точки соответственно. Точка лежит на диагоналях четырнадцатиугольника и , которые симметричны относительно диагонали , следовательно, точка также лежит на диагонали . Обозначим пересечение диагоналей и через . Точка является пересечением диагоналей и , причём диагонали и симметричны друг другу относительно диагонали , а диагональ симметрична сама себе относительно той же диагонали. Следовательно, точки и симметричны друг другу относительно диагонали . Как мы уже знаем, точка лежит на этой диагонали, следовательно, отрезки и симметричны относительно неё, то есть и равны.
Докажем теперь, что . Прямые и симметричны относительно . Углы и опираются на равные дуги, а значит, равны по следствию из теоремы о вписанном угле. Следовательно, прямые и также симметричны относительно . Значит, точки и симметричны относительно как пересечения прямых с и с соответственно. При этом точка лежит на отрезке . Следовательно, отрезки и симметричны относительно , то есть и равны.
Итак, и , а значит, , то есть треугольник равнобедренный.
С целыми длинами сторон
Существует бесконечное число различных целочисленных треугольников Шарыгина, что было доказано при помощи теории эллиптических кривых[4] (конкретно была рассмотрена эллиптическая кривая, задаваемая кубикой Шарыгина). Пример, одна из сторон в котором является наименьшей из возможных, имеет следующий набор сторон[1]
Вариация треугольника Шарыгина для двух внешних биссектрис и одной внутренней.
Рассматриваются также аналогичные треугольники, в которых равнобедренным является не треугольник, образованный основаниями биссектрис внутренних углов, а треугольник, образованный одним основанием биссектрисы внутреннего угла и двумя основаниями внешних биссектрис к двум другим углам.[5]