Висоти трикутника виходять від кожної вершини і перетинають протилежну сторону під прямим кутом. Точка, де перетинаються три висоти, є ортоцентром.
Бісектриси кутів — це промені, що виходять з кожної вершини трикутника і ділять відповідний кут навпіл. Всі вони перетинаються в центрі вписаного кола.
Медіани з'єднують кожну вершину трикутника з серединою протилежної сторони. Три медіани перетинаються в центроїді.
Перпендикулярні бісектриси — це лінії, що виходять із середин кожної сторони трикутника під кутом 90 градусів. Три перпендикулярні бісектриси перетинаються в центрі описаного кола.
Існують інші множини ліній, пов'язані з трикутником, які також є конкурентними. Наприклад:
Будь-яка медіана (яка обов'язково є бісектрисою площі трикутника) конкурентна з двома іншими бісектрисами площі, кожна з яких паралельна стороні[1].
Спліттер[en] трикутника — це відрізок, один кінець якого знаходиться в одній з трьох вершин трикутника і ділить периметр навпіл. Три спліттера перетинаються в точці Наґеля трикутника.
Будь-яка лінія, яка ділить площу трикутника та його периметр навпіл, проходить через центр вписаного кола, і в кожному трикутнику є одна, дві або три такі лінії[2]. Таким чином, якщо їх три, вони перетинаються в центрі вписаного кола.
Точка Тері[en] трикутника — це точка перетину прямих, що проходять через вершини трикутника перпендикулярно до відповідних сторін першого трикутника Брокара[en] цього трикутника.
Точка Шиффлера[en] трикутника — це точка перетину ліній Ейлера чотирьох трикутників: цього трикутника та трьох трикутників, кожен з яких має дві спільні з ним вершини і центр вписаного кола як третю вершину.
Точки Наполеона та їх узагальнення є конкурентними точками. Наприклад, перша точка Наполеона є точкою перетину трьох ліній, кожна з яких проходить від вершини до центроїда рівностороннього трикутника, побудованого на зовнішній стороні трикутника, протилежній цій вершині. Узагальненням цього поняття є точка Якобі[en].
Три лінії, кожна з яких утворена побудовою зовнішнього рівностороннього трикутника на одній зі сторін вихідного трикутника та з'єднанням нової вершини з протилежною вершиною вихідного трикутника, є конкурентними в точці, яка називається першим ізогональним центром. У випадку, коли вихідний трикутник не має кута більше 120°, ця точка також є точкою Ферма.
Точка Аполлонія — це точка перетину трьох прямих, кожна з яких сполучає точку дотику кола, до якого дотикається з внутрішнього боку зовнівписане коло трикутника, з протилежною вершиною трикутника.
Чотирикутники
Дві бімедіаничотирикутника (відрізки, що з'єднують середини протилежних сторін) і відрізок, що з'єднує середини діагоналей, є конкурентними та поділяються навпіл точкою перетину[3]:p.125.
Опис інших конкурентних ліній описаного чотирикутника наведено тут.
У вписаному чотирикутнику, чотири відрізки лінії, кожен з яких перпендикулярний до однієї сторони та проходить через середину протилежної сторони, є конкурентними[3]:p.131[5]. Ці відрізки лінії називаються англ.maltitudes[6], що є абревіатурою для висоти середньої точки (англ.midpoint altitude). Їх спільна точка називається антицентром.
Опуклий чотирикутник є зовні-описаним тоді і тільки тоді, коли існує шість конкурентних бісектрис кутів: бісектриси внутрішніх кутів, які відповідають двом протилежним вершинам, бісектриси зовнішніх кутів, які відповідають двом іншим вершинам, і бісектриси зовнішніх кутів, утворених в точках перетину продовження протилежних сторін.
Шестикутники
Якщо послідовними сторонами циклічногошестикутника є a, b, c, d, e, f, то три головні діагоналі перетинаються в одній точці тоді і тільки тоді, коли ace = bdf[7].
Конкурентні прямі виникають у дуальній теоремі Паппа.
Якщо для кожної сторони циклічного шестикутника продовжити суміжні сторони до їх перетину, то з зовнішнього боку цієї сторони утворюється трикутник. Тоді відрізки, що з'єднують центри описаних кіл протилежних трикутників, є конкурентними[8].
Правильні многокутники
Якщо правильний многокутник має парну кількість сторін, діагоналі, що з'єднують протилежні вершини, перетинаються в центрі многокутника.
Усі бісектриси площі та бісектриси периметра еліпса конкурентні в центрі еліпса.
Гіперболи
У гіперболі Гіпербола (математика) конкурентними є: (1) коло, що проходить через фокуси гіперболи з центром у центрі гіперболи; (2) кожна з дотичних до гіперболи у вершинах; і (3) будь-яка з асимптот гіперболи.
Так само є конкурентними: (1) коло з центром у центрі гіперболи, яке проходить через вершини гіперболи; (2) будь-яка директриса; і (3) будь-яка з асимптот.
Чотиригранники
У чотириграннику, всі чотири медіани та три бімедіани збігаються в точці, яка називається центроїдом чотиригранника[9].
Згідно з теоремою Кронекера-Капеллі, система рівнянь є сумісною[en] тоді і тільки тоді, коли рангматриці коефіцієнтів[en] дорівнює рангу розширеної матриці (матриці коефіцієнтів, доповненої стовпчиком з точками перетину), і система має єдиний розв'язок тоді і тільки тоді, коли цей загальний ранг дорівнює кількості змінних. Отже, з двома змінними на площині, k прямих, асоційованих з множиною k рівнянь, є конкурентними тоді і тільки тоді, коли ранг k × 2 матриці коефіцієнтів і ранг розширеної k × 3 матриці дорівнюють 2. У цьому у випадку лише два з k рівнянь незалежні[en], і точку перетину можна знайти, розв'язуючи будь-які два взаємно незалежні рівняння одночасно для двох змінних.
↑Dunn, J. A., and Pretty, J. E., "Halving a triangle", Mathematical Gazette[en] 56, May 1972, 105—108.
↑Kodokostas, Dimitrios, "Triangle Equalizers", Mathematics Magazine[en] 83, April 2010, pp. 141—146.
↑ абAltshiller-Court, Nathan (2007) [1952], College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle(англ.) (вид. 2nd), Courier Dover, с. 131, 137—8, ISBN978-0-486-45805-2, OCLC78063045
↑Andreescu, Titu and Enescu, Bogdan, Mathematical Olympiad Treasures, Birkhäuser, 2006, pp. 64–68.
↑Honsberger, Ross (1995), 4.2 Cyclic quadrilaterals, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, New Mathematical Library (англ.), т. 37, Cambridge University Press, с. 35—39, ISBN978-0-88385-639-0