Таким чином, паралельне перенесення для зв'язності дає спосіб, у певному сенсі, переносити локальну геометрію многовида уздовж кривої: тобто «з'єднувати» геометрії сусідніх точок. Загалом може існувати нескінченна кількість способів паралельного перенесення, але специфікація одного є рівнозначною заданню зв'язності. Фактично, звичайне поняттям зв'язності є інфінітезимальним аналогом паралельного перенесення. Навпаки, паралельне перенесення — локальна реалізація зв'язності.
Оскільки паралельне перенесення забезпечує локальну реалізацію зв'язності, воно також забезпечує локальну реалізацію кривини, відому як голономія. Теорема Емброуза — Сінгера явно задає таке співвідношення між кривиною та голономією.
Інші поняття зв'язності оснащені власними системами паралельного перенесення. Наприклад, зв'язність Кошуля у векторному розшаруванні також дозволяє паралельне перенесення векторів у значній мірі так само, як у випадку коваріантної похідної. Зв'язності Картана і Ересмана дозволяють ввести поняття «підняття кривих» з многовида на загальний простір головного чи локально тривіального розшарування.
Паралельне перенесення вздовж кривої на поверхні
Паралельне перенесення вектора по замкнутому контурі на сфері. Кут є пропорційним площі всередині контуру.
У звичайному тривимірному просторідотичний простір у кожній точці можна ідентифікувати із самим простором . Для будь-якої регулярної кривої кожній точці кривої можна присвоїти вектор Якщо при цьому , то векторне поле вздовж кривої називається паралельним. Очевидно, що , тоді і тільки тоді, коли для похідної є правильною рівність
Якщо вектори зображати, як направлені відрізки із початком у точці кривої, то для паралельного векторного поля всі відрізки матимуть однакову довжину і будуть паралельними.
Паралельні векторні поля для площини
Для площиниP у тривимірному просторі її дотичний простір теж можна ідентифікувати із самою площиною. Для кривої , якщо кожній точці кривої присвоїти вектор , що є паралельним площині P (тобто, його можна інтерпретувати як дотичний вектор у точці ), то у випадку диференційовності поля поле теж буде складатися із дотичних векторів до площини у відповідних точках кривої. Зокрема полями, що задовольняють диференціальне рівняння теж будуть векторні поля , де єдиним обмеженням у цьому випадку є те, що цей єдиний вектор є паралельний площині P. Такі поля теж називаються паралельними.
Паралельні векторні поля для довільної регулярної поверхні
Для загальної регулярної поверхні S у для регулярної кривої може не існувати поля такого, що . Також звичайна похідна (у тривимірному просторі) гладкого векторного поля може не бути векторним полем (тобто відповідні вектори не належатимуть дотичним площинам). У цьому випадку замість звичайної похідної векторного поля вздовж кривої має її тангенціальну складову, тобто проєкцію похідної на дотичну площину. А саме для кривої , точки і диференційовного векторного поля можна ввести коваріантну похідну:
де позначає нормаль до поверхні у даній точці.
Векторне поле називається паралельним, якщо воно задовольняє рівнянню:
Властивості
У локальних координатах, якщо записати то рівняння для паралельного поля вздовж кривої можна записати як лінійну систему диференціальних рівнянь другого порядку:
Із властивостей лінійних диференціальних рівнянь випливає, що для довільного вектора існує єдине паралельне векторне поля вздовж кривої значення якого у точці p буде рівним X. Це поле називається паралельним перенесенням вектора X вздовж кривої. Зокрема для можна ввести відображення що кожному вектору ставить у відповідність вектор одержаний паралельним перенесенням вектора X вздовж кривої. З властивостей лінійних диференціальних рівнянь випливає, що є невиродженим лінійним відображенням.
Якщо — паралельні векторні поля вздовж кривої , то Зокрема довжини векторів паралельного поля є сталими, як і кут між векторами двох довільних паралельних векторних полів. Це випливає з того, що згідно означення коваріантної похідної і паралельного поля Тому
Паралельне перенесення на векторному розшаруванні
Означення і властивості паралельних векторних полів для поверхонь у тривимірних полях легко переносяться на гіперповерхні у багатовимірних просторах. Більш загально його можна ввести для многовидів із їх дотичними розшаруваннями або навіть для векторних розшарувань над многовидами.
Припустимо, що нам задано елемент e0 ∈ EP у P = γ(0) ∈ M, а не перетин. Паралельним перенесеннямe0 уздовж γ називається продовження e0 до паралельного перетину X на γ.
Точніше, X є єдиним перетином E вздовж кривої γ, для якого
Зв'язність ∇ визначає спосіб перенесення елементів шарів уздовж кривої і (оскільки відповідні диференціальні рівняння є лінійними) лінійні ізоморфізми між шарами розшарування у точках вздовж кривої:
з векторного простору, над точкою γ(s) у векторний простір, над точкою γ(t). Цей ізоморфізм називається відображенням паралельного перенесення, пов'язаним з кривою. Ізоморфізми між шарами, отримані таким способом, загалом залежатимуть від вибору кривої: якщо такої залежності немає, то паралельне перенесення уздовж кожної можна використати для введення паралельних перетинів Е на всьому M. Це можливо лише у тому випадку, якщо кривина зв'язності ∇ є рівною нулю.
Зокрема, паралельне перенесення навколо замкнутої кривої, починаючи з точки x, визначає автоморфізм дотичного простору у точці x, що не обов'язково має тривіальне значення. Такі автоморфізми для всіх замкнутих кривих, для точки x, утворюють групу, що називається групою голономій зв'язності ∇ у точці x.
Існує тісний зв'язок між цією групою і значенням кривини ∇ у x; (теорема Емброуза — Сінгера).
Відновлення зв'язності з паралельного перенесення
Для коваріантної похідної ∇, паралельне перенесення вздовж кривої γ одержується шляхом інтегрування диференціального рівняння. Навпаки, якщо є деяке поняття паралельного перенесення, що задовольняє необхідні умови то відповідну зв'язність можна отримати диференціюванням.
А саме для векторного розшарування із заданою зв'язністю ∇ для кожної кривої γ у многовиді одержується набір лінійних ізоморфізмів:
для всіх
Нехай γ — диференційовна крива в M з початковою точкою γ(0) та початковим дотичним вектором X і V є гладким перетином E над γ. У цьому випадку
Справді, нехай — деякий базис шару над і — вектори одержані паралельним перенесенням (в кожному випадку одержується знову ж базис відповідного векторного простору оскільки оператори паралельного перенесення є невиродженими). Нехай у цих базисах Згідно означення зв'язності:
залежності Γ від γ, s, і t є гладкими у певному сенсі.
то ввівши диференціальний оператор:
отримаємо зв'язність. Тобто фактично два поняття паралельного перенесення і зв'язності є тотожними і одне можна одержати з іншого.
Поняття гладкості в умовах 3 вимагає загалом деяких додаткових понять і часто є простішою для більш загальних понять паралельного перенесення.
Спеціальний випадок: дотичне розшарування
Нехай M — гладкий многовид. Тоді зв'язність на дотичному розшаруванніM, яка називається афінною зв'язністю є частковим випадком зв'язності на векторних розшаруваннях. Перетини векторного розшарування у цьому випадку є векторними полями. Відповідно векторне поле Y вздовж гладкої кривої γ:I → M називається паралельним якщо воно задовольняє умові
Нехай — локальні координати в деякому координатному околі і — відповідні їм векторні поля. За означенням символи Крістофеля вводяться із співвідношень Якщо образ кривої γ:I → M належить цьому координатному околу то можна ввести позначення
При цих позначеннях можна записати і Тоді локально умову паралельності векторних полів можна записати як лінійну систему диференціальних рівнянь:
або прирівнявши до нуля всі компоненти
При цьому виділяється клас кривих, що називаються (афінними) геодезичними. Гладка криваγ : I → M є афінною геодезичною, якщо є паралельним векторним полем уздовж , тобто
Продиференціювавши це співвідношення можна записати:
Паралельне перенесення в рімановій геометрії
В (псевдо) рімановій геометрії, метрична зв'язність — зв'язність, відображення паралельного перенесення для якої зберігає метричний тензор. Таким чином, метрична зв'язність це будь-яка зв'язність Γ така, що для будь-яких двох векторів X, Y ∈ Tγ(s)
Якщо ∇ є метричною зв'язністю, то афінні геодезичні є звичайними геодезичними ріманової геометрії і є локально мінімальними кривими відстанями. Точніше, спочатку слід зазначити, що якщо γ : I → M, де I є відкритим інтервалом, є геодезичною, тоді норма є сталою на I. Дійсно,
Узагальнення
Більш загальні поняття паралельного перенесення можна ввести для інших типів зв'язності.
Нехай P → M — головне розшарування над многовидом M зі структурною групою ЛіG і зв'язністю ω. Як і у випадку векторних розшарувань, зв'язність ω на P визначає для кожної кривої γ в M, відображення
з шару, над точкою γ(s) у шар, над точкою γ(t), що є ізоморфізмом однорідних просторів: тобто для кожного g∈G.
Можливі також подальші узагальнення паралельного перенесення. У контексті зв'язності Ересмана, де зв'язність залежить від спеціального поняття горизонтального підйому.
do Carmo, Manfredo Perdigao (1994). Riemannian Geometry. Birkhauser. ISBN978-0-8176-3490-2.
Darling, R. W. R. (1994), Differential Forms and Connections, Cambridge, UK: Cambridge University Press, ISBN0-521-46800-0
Guggenheimer, Heinrich (1977), Differential Geometry, Dover, ISBN0-486-63433-7
Kobayashi, Shoshichi; Nomizu, Katsumi (1996) [1963], Foundations of Differential Geometry, Vol. 1, Wiley Classics Library, New York: Wiley Interscience, ISBN0-471-15733-3
Madsen, I. H.; Tornehave, J (1997). From Calculus to Cohomology: De Rham Cohomology and Characteristic Classes. Cambridge University Press. ISBN978-0521580595.