Унітарний елемент — це узагальнення унітарного оператора. Елемент унітарної алгебри називається унітарним елементом, якщо виконується рівність , де — тотожний елемент.[1]
Слабша умова визначає ізометрію. Інша умова, , визначає коізометрію. Таким чином, унітарний оператор — це обмежений лінійний оператор, який одночасно є ізометрією і коізометрією[2] або, що еквівалентно, сюр’єктивною ізометрією.[3]
Еквівалентне означення є наступним:
Означення 2.Унітарний оператор — це обмежений лінійний оператор на гільбертовому просторі , для якого виконується наступні умови:
Поняття ізоморфізму в категорії гільбертових просторів фіксується, якщо в цьому означенні розрізняються область визначення й діапазону. Ізометрії зберігають послідовності Коші, а отже, зберігається властивість повноти гільбертових просторів.[4]
Наступне, здавалося б слабкіше, означення також є еквівалентним:
Означення 3.Унітарний оператор — це обмежений лінійний оператор на гільбертовому просторі , для якого виконується наступні умови:
Оператор зберігає внутрішній добуток гільбертового простору . Іншими словами, для всіх векторів і в просторі маємо
Щоб переконатися, що означення 1 і 3 є еквівалентними, звернемо увагу, що з умови збереження внутрішнього добутку оператора випливає, що оператор є ізометрією (отже, він є обмеженим лінійним оператором).
Той факт, що оператор має щільний діапазон, гарантує, що він має обмежений обернений оператор .
Очевидно, що .
Таким чином, унітарні оператори є лише автоморфізмами гільбертових просторів, тобто вони зберігають структуру (у даному випадку лінійну структуру простору, внутрішній добуток, а отже, і топологію простору, на якому вони діють. Групу всіх унітарних операторів із даного гільбертового простору у себе іноді називають групою Гільберта простору , позначають як або .
Повороти в просторі є найпростішим нетривіальним прикладом унітарних операторів. Повороти не змінюють довжину вектора або кут між двома векторами. Цей приклад можна розширити на випадок простору .
У векторному просторікомплексних чисел множення на число з модулем, тобто на число виду для , є унітарним оператором. Число називають фазою, а саме множення називають множенням на фазу. Зауважимо, що значення числа за модулем не впливає на результат множення, і тому незалежні унітарні оператори на параметризуються колом. Відповідна група, яка як множина є колом, називається .
У більш загальному випадку унітарні матриці є саме унітарними операторами на скінченновимірних гільбертових просторах, тому поняття унітарного оператора є узагальненням поняття унітарної матриці. Ортогональні матриці — це окремий випадок унітарних матриць, у яких усі елементи є дійсними. Вони є унітарними операторами на .
Двосторонній зсув на просторі послідовностей , що індексується цілими числами, є унітарним. У загальному випадку, будь-який оператор у гільбертовому просторі, який діє шляхом перестановки ортонормованого базису, є унітарним. У скінченномірному випадку такими операторами є матриці перестановок.
Односторонній зсув (правий зсув) є ізометрією; її спряжена величина (лівий зсув) є коізометрією.
Вимога лінійності у означенні унітарного оператора можна відкинути
без зміни сенсу, оскільки її можна отримати з лінійності та додатної
визначеності скалярного добутку:
Аналогічно можна отримати
Властивості
Спектр унітарного оператора лежить на одиничному колі. Тобто для будь-якого комплексного числа зі спектру маємо, що . Це можна розглядати як наслідок спектральної теореми для нормальних операторів[en]. За теоремою оператор є унітарно еквівалентним множенню на вимірну за Борелем функцію з для деякого простору з скінченною мірою . Тоді з рівності випливає, що , майже скрізь за мірою . Це показує, що істотний діапазон функції , а отже, спектр оператора , лежить на одиничному колі.
Лінійний оператор є унітарним тоді, коли він сюр’єктивний та ізометричний. (Використайте поляризаційну тотожність для доведеннячастини “й лише тоді”.)