安德里卡猜想安德里卡猜想(Andrica's conjecture)是關於質數間的間隙的猜想[1],以罗马尼亚数学家多林·安德里卡的名字命名。 該猜想認為,對於任意的,下述不等式成立: 其中是第個質數。若是第個質數間隙,那麼安德里卡猜想可表述如下: 實證證據伊姆兰·戈里(Imran Ghory)用了大質數間隙的資料,證實了該猜想對大到的都成立。[2]利用最大質數間隙(maximal gap)和質數間隙不等式,可將此結果推廣到大到的之上。 離散方城呈遞減,其中的「高水位」標記,出現在之處,其中,而對於最初的個質數而言,沒有比這更大的值。由於該方程對呈現非病態遞減之故,因此若要在不斷變大的情況下使得這個差變大,一個不斷增長的質數間隙是必要的。故該猜想非常可能是正確的,但目前還沒有證明。 推廣![]() 安德里卡猜想的推廣會論及以下等式: 其中是第個質數,而x是任意正實數。 易證x的最大可能解出現於處,在此處,;而有猜想認為,x的最小可能解出現於處,在此處,。(OEIS數列A038458) 該猜想也可以不等式表述,因此廣義安德里卡猜想可表述如下:
參見參考和註解
外部連結 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia