МатэматыкаМатэма́тыка (стар.-грэч.: μᾰθημᾰτικά[1] < стар.-грэч.: μάθημα — вывучэнне, навука) — дакладная фармальная навука[2], якая першапачаткова вывучала колькасныя адносіны і прасторавыя формы рэчаіснага свету[3]. Традыцыйна матэматыка лічыцца асаблівай у сваім родзе навукай. Пачаткі матэматыкі з’явіліся ў глыбокай старажытнасці. Асноўныя звесткіІдэалізаваныя ўласцівасці доследных аб’ектаў альбо фармулююцца ў выглядзе аксіём, альбо пералічваюцца ў азначэнні адпаведных матэматычных аб’ектаў. Затым па строгіх правілах лагічнага вываду з гэтых уласцівасцей выводзяцца іншыя праўдзівыя ўласцівасці (тэарэмы). Гэтая тэорыя ў сукупнасці ўтварае матэматычную мадэль доследнага аб’екта. Такім чынам, першапачаткова, зыходзячы з прасторавых і колькасных суадносін, матэматыка атрымлівае больш абстрактныя суадносіны, вывучэнне якіх таксама з’яўляецца прадметам сучаснай матэматыкі[4]. Традыцыйна матэматыка дзеліцца на тэарэтычную, якая выконвае паглыблены аналіз унутрыматэматычных структур, і прыкладную, якая прадстаўляе свае мадэлі іншым навукам і інжынерным дысцыплінам, прычым некаторыя з іх займаюць пагранічнае з матэматыкай становішча. У прыватнасці, фармальная логіка можа разглядацца і як частка філасофскіх навук, і як частка матэматычных навук; механіка — і фізіка, і матэматыка; інфарматыка, камп’ютарныя тэхналогіі і алгарытміка адносяцца як да інжынерыі, так і да матэматычных навук і г. д. У літаратуры было прапанавана шмат розных азначэнняў матэматыкі. НазваСлова «матэматыка» пайшло ад стар.-грэч.: μάθημα, што азначае вывучэнне, веды, навука, і стар.-грэч.: μαθηματικός, якое першапачаткова азначала ўспрыімлівы, паспяваючы[5], пазней звязаны з вывучэннем, пасля звязаны з матэматыкай. Між іншым, μαθηματικὴ τέχνη, на латыні ars mathematica, азначае мастацтва матэматыкі. Тэрмін стар.-грэч.: μᾰθημᾰτικά у сучасным значэнні «матэматыка» сустракаецца ўжо ў працах Арыстоцеля (IV ст. да н. э.). У беларускую мову слова прыйшло праз лацінскую (лац.: mathematica) і старапольскую (польск.: matematyka)[6]. У помніках на старабеларускай мове слова «математикъ», ці «математыкъ» сустракаецца ўжо ў канцы XVI — першай палавіне XVII ст.[7] Падобным шляхам слова «матэматыка» трапіла і ў рускую мову[8]. У тэкстах на рускай мове слова «математика», ці «маѳематика» сустракаецца прынамсі з XVII стагоддзя, напрыклад, у Мікалая Спафарыя ў «Книге избранной вкратце о девяти мусах и о седмих свободных художествах» (1672 год)[9]. АзначэнніАдно з першых азначэнняў прадмета матэматыкі даў Дэкарт[10]:
У савецкі час класічным лічылася азначэнне з ВСЭ[11], дадзенае А. М. Калмагоравым:
Гэта азначэнне Энгельса[12]; праўда, далей Калмагораў тлумачыць, што ўсе выкарыстаныя тэрміны трэба разумець у самым шырокім і абстрактным сэнсе.
Герман Вейль песімістычна ацаніў магчымасць даць агульнапрынятае азначэнне прадмета матэматыкі:
ГісторыяПаводле акадэміка А. М. Калмагорова гісторыя матэматыкі дзеліцца на наступныя перыяды:
![]() Развіццё матэматыкі пачалося разам з тым, як чалавек стаў выкарыстоўваць абстракцыі колькі-небудзь высокага ўзроўню. Простая абстракцыя — лікі; асэнсаванне таго, што два яблыкі і два апельсіны, нягледзячы на ўсе іх адрозненні, маюць нешта агульнае, а іменна займаюць абедзве рукі аднаго чалавека, — якаснае дасягненне мыслення чалавека. Акрамя таго, што старажытныя людзі даведаліся, як лічыць канкрэтныя аб’екты, яны таксама зразумелі, як вылічаць і абстрактныя колькасці, такія, як час: дні, поры года, гады. З элементарнага лічэння натуральным чынам пачала развівацца арыфметыка: складанне, адніманне, множанне і дзяленне лікаў. Развіццё матэматыкі абапіраецца на пісьменнасць і ўменне запісваць лікі. Напэўна, старажытныя людзі спачатку запісвалі колькасць шляхам малявання рысачак на зямлі ці выдрапвалі іх на драўніне. Старажытныя інкі, не маючы іншай сістэмы пісьменнасці, прадстаўлялі і захоўвалі лікавыя дадзеныя, выкарыстоўваючы складаную сістэму вяровачных вузлоў, так званыя кіпу. Існавала мноства розных сістэм злічэння. Першыя вядомыя запісы лікаў былі знойдзены ў папірусе Ахмеса, створаным егіпцянамі Сярэдняга царства. Індская цывілізацыя распрацавала сучасную дзесятковую сістэму злічэння, якая ўключае паняцце нуля. Гістарычна асноўныя матэматычныя дысцыпліны з’явіліся з-за неабходнасці весці разлікі ў камерцыйнай сферы, пры вымярэнні зямель і для прадказання астранамічных з’яў і, пазней, для рашэння новых фізічных задач. Кожная з гэтых абласцей адыграла вялікую ролю ў шырокім развіцці матэматыкі, якое заключаецца ў вывучэнні структур, прастор і змен. Раздзелы матэматыкі1. Матэматыка як навучальная дысцыпліна дзеліцца на элементарную матэматыку, вывучаную ў сярэдняй школе і ўтвораную дысцыплінамі:
і вышэйшую матэматыку, вывучаную на нематэматычных спецыяльнасцях ВНУ. Дысцыпліны, што ўваходзяць у склад вышэйшай матэматыкі, вар’іруюцца ў залежнасці ад спецыяльнасці. Філасофія матэматыкіМэты і метадыМатэматыка вывучае ўяўныя, ідэальныя аб’екты і суадносіны паміж імі, выкарыстоўваючы фармальную мову. У агульным выпадку матэматычныя паняцці і тэарэмы не абавязкова маюць адпаведнасць чаму-небудзь у фізічным свеце. Галоўнае заданне ўжытковага раздзела матэматыкі — стварыць матэматычную мадэль, досыць адэкватную доследнаму рэальнаму аб’екту. Заданне матэматыка-тэарэтыка — забяспечыць дастатковы набор зручных сродкаў для дасягнення гэтай мэты. Утрыманне матэматыкі можна вызначыць як сістэму матэматычных мадэляў і прылад для іх стварэння. Мадэль аб’екта ўлічвае не ўсе яго рысы, а толькі самыя патрэбныя для мэт вывучэння (ідэалізаваныя). Прыкладам, вывучаючы фізічныя ўласцівасці апельсіна, мы можам абстрагавацца ад яго колеру і густу і ўявіць яго (хай не ідэальна дакладнае) шарам. Калі ж нам трэба зразумець, колькі апельсінаў атрымаецца, калі мы складзём разам два і тры, — то можна абстрагавацца і ад формы, пакінуўшы ля мадэлі толькі адну характарыстыку — колькасць. Абстракцыя і ўсталяванне сувязяў паміж аб’ектамі ў самым агульным выглядзе — адзін з галоўных кірункаў матэматычнай творчасці. Іншы кірунак, разам з абстрагаваннем — абагульненне. Прыкладам, абагульняючы паняцце «прастора» да прасторы n-вымярэнняў. «Прастора , пры з’яўляецца матэматычнай выдумкай. Зрэшты, вельмі геніяльнай выдумкай, якая дапамагае матэматычна разбірацца ў складаных з’явах»[15]. Вывучэнне ўнутрыматэматычных аб’ектаў, зазвычай, адбываецца пры дапамозе аксіяматычнага метаду: спачатку для доследных аб’ектаў фармулююцца спіс асноўных паняццяў і аксіём, а потым з аксіём з дапамогай правіл высновы атрымліваюць змястоўныя тэарэмы, у сукупнасці ўтваральныя матэматычную мадэль. ПадставыПытанне існасці і падстаў матэматыкі абмяркоўвалася з часоў Платона. Пачынаючы з XX стагоддзя назіраецца параўнальная згода ў пытанні, што належыць лічыць строгім матэматычным довадам, аднак адсутнічае згода ў разуменні таго, што ў матэматыцы лічыць спрадвечна праўдзівым. Адсюль выцякаюць нязгоды як у пытаннях аксіёматыкі і ўзаемасувязі галін матэматыкі, гэтак і ў выбары лагічных сістэм, якімі варта пры довадах карыстацца. Апроч скептычнага, вядомыя ніжэйпералічаныя падыходы да дадзенага пытання. Тэарэтыка-множны падыходПрапануецца разглядаць усе матэматычныя аб’екты ў рамках тэорыі мностваў, найчасцей з аксіяматыкай Цэрмела — Фрэнкеля (хоць існуе мноства іншых, раўназначных ёй). Дадзены падыход лічыцца з сярэдзіны XX стагоддзя пераважным, аднак у рэчаіснасці большасць матэматычных прац не ставяць заданняў перавесці свае сцверджанні строга на мову тэорыі мностваў, а аперуюць паняццямі і фактамі, усталяванымі ў некаторых абласцях матэматыкі. Такім чынам, калі ў тэорыі мностваў будзе выяўлена супярэчнасць, гэта не пацягне за сабой абясцэньванне большасці вынікаў. ЛагіцызмДадзены падыход мяркуе строгую тыпізацыю матэматычных аб’ектаў. Многія парадоксы, якіх унікаюць у тэорыі мностваў толькі шляхам адмысловых хітрыкаў, аказваюцца немагчымымі ў прынцыпе. ФармалізмДадзены падыход мяркуе вывучэнне фармальных сістэм на глебе класічнай логікі. ІнтуіцыянізмІнтуіцыянізм мяркуе ў падставе матэматыкі інтуіцыйную логіку, больш абмежаваную ў сродках доваду (але, як лічыцца, і больш надзейную). Інтуіцыянізм адпрэчвае довад ад адваротнага, многія неканструктыўныя довады робяцца немагчымымі, а многія праблемы тэорыі мностваў — бессэнсоўнымі (нефармалізоўнымі). Канструктыўная матэматыкаКанструктыўная матэматыка — блізкая да інтуіцыянізму плынь у матэматыцы, што вывучае канструктыўныя пабудовы. Паводле крытэрыю канструктыўнасці — «існаваць — значыць быць пабудаваным»[16]. Крытэрый канструктыўнасці — мацнейшае патрабаванне, чым крытэрый несупярэчнасці[17]. Асноўныя тэмыЛік (колькасць)Асноўны раздзел, які разглядае абстракцыю колькасці — алгебра. Паняцце «лік» спачатку зарадзілася з арыфметычных уяўленняў і адносілася да натуральных лікаў. Надалей яно, з дапамогай алгебры, было паступова пашырана на цэлыя, рацыянальныя, рэчаісныя, комплексныя і іншыя лікі.
Лікі — Натуральныя лікі — Цэлыя лікі — Рацыянальныя лікі — Ірацыянальныя лікі — Алгебраічныя лікі — Трансцэндэнтныя лікі — Рэчаісныя лікі — Камплексныя лікі — Гіперкамплексныя лікі — Кватэрніёны — Актаніёны — Седэніёны — Гіперрэальныя лікі — Сюррэальныя лікі — p-адычныя лікі — Матэматычныя сталыя — Назвы лікаў — Бясконцасць — Базы Ператварэнні
Арыфметыка — Вектарны аналіз — Аналіз — Тэорыя меры — Дыферэнцыяльныя ўраўненні — Дынамічныя сістэмы — Тэорыя хаосу СтруктурыТэорыя мностваў — Лінейная алгебра — Агульная алгебра (улучае, у прыватнасці, тэорыю груп, універсальную алгебру, тэорыю катэгорый) — Алгебраічная геаметрыя — Тэорыя лікаў — Тапалогія. Прасторавыя адносіны
Геаметрыя — Трыганаметрыя — Алгебраічная геаметрыя — Тапалогія — Дыферэнцыяльная геаметрыя — Алгебраічная тапалогія — Лінейная алгебра — Фракталы — Тэорыя меры. Дыскрэтная матэматыкаДыскрэтная матэматыка улучае сродкі даследавання аб’ектаў, здольных прымаць толькі асобныя (дыскрэтныя) значэнні (то бок аб’ектаў, не здольных змяняцца плыўна).[18]
Камбінаторыка — Тэорыя мностваў — Тэорыя рашотак — Матэматычная логіка — Тэорыя вылічальнасці— Крыптаграфія — Тэорыя функцыянальных сістэм — Тэорыя графаў — Тэорыя алгарытмаў — Лагічныя злічэнні — Інфарматыка. Анлайнавыя сэрвісыІснуе вялікі лік сайтаў, што падаюць сэрвіс для матэматычных разлікаў. Большасць з іх англамоўныя. Праграмнае забеспячэннеМатэматычнае праграмнае забеспячэнне — шматграннае:
Гл. таксамаЗноскі
Літаратура
Спасылкі
Памылка Lua у Модуль:External_links на радку 45: assign to undeclared variable 'link'. |
Portal di Ensiklopedia Dunia