最大フロー問題![]() 最大フロー問題(さいだいフローもんだい、英: Maximum flow problem)または最大流問題とは、単一の始点から単一の終点へのフローネットワークで最大となるフローを求める問題である[1]。単にフローの最大値を求める問題と定義されることもある。最大フロー問題は、より複雑なネットワークフロー問題である最小費用流問題の特殊ケースと見ることもできる。 最小カット問題(英: Minimum cut problem)とは、辺の重みが非負値の有向グラフにおいて、始点から終点までのパスが存在しなくなるように辺を除去した時に、除去した辺の重みの総和を最小にする問題。始点から終点への最大フローは始点から終点への最小カットと等しい。これを最大フロー最小カット定理と呼ぶ。 2部グラフの最大マッチング問題(英: Maximum bipartite matching)とは、2部グラフの最大マッチングを求める問題で、これも最大フロー問題のアルゴリズムを使用して解ける[1]。 解法有向グラフ において、各枝 の容量を としたとき、始点 から終点 への最大フロー を求める。この問題の解法アルゴリズムは多数存在する。
これら以外にも解法アルゴリズムは多数存在し、参考文献(特に (Goldberg and Tarjan 1988))を参照されたい。 脚注
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia