칸토어의 정리집합론에서 칸토어의 정리(영어: Cantor's theorem)는 멱집합의 크기가 항상 원래의 집합의 크기보다 크다는 정리이다. 즉, 집합과 멱집합의 원소는 일대일 대응할 수 없다. 정의칸토어의 정리에 따르면, 멱집합 의 크기는 항상 원래의 집합 의 크기보다 크다. 즉, 다음이 성립한다. 즉, 임의의 기수 에 대하여, 다음이 성립한다. 증명만약 이라면, 이므로 성립한다. 만약 이라면, 우선 단사 함수 가 존재하므로, 이다. 또한, 만약 라고 가정하면, 전단사 함수 가 존재한다. 이 경우, 부분 집합 를 구성할 수 있는데, 의 정의에 따라 이며, 이는 모순이다. 즉, 이며, 따라서 이다. 역사게오르크 칸토어가 증명하였다. 이 정리로부터 제기된 의문은 연속체 가설의 토대를 제공하였다. 같이 보기 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia