전단사 함수![]() 수학에서 전단사 함수(全單射函數, 영어: bijection, bijective function)는 두 집합 사이를 중복 없이 모두 일대일로 대응시키는 함수이다. 일대일 대응(一對一對應, 영어: one-to-one correspondence)이라고도 한다. 정의두 집합 , 사이의 함수 에 대하여, 다음 조건들이 서로 동치이며, 이를 만족시키는 함수를 전단사 함수라고 한다. 성질두 집합 와 사이에 전단사 함수가 존재한다면, 의 집합의 크기와 의 집합의 크기는 같다. 크기가 같은 두 유한 집합 , 사이의 함수 가 단사 함수이거나 전사 함수라면, 항상 전단사 함수이다. 그러나 이는 무한 집합에 대하여 성립하지 않는다. (예를 들어, , 은 단사 함수이지만 전사 함수가 아니다.) 집합 위의 전단사 함수 들의 집합은 대칭군 라는 군을 이루며, 이는 집합의 범주에서의 자기 동형군이다. 유한 집합 위에서, 집합 로 가는 전단사 함수의 수는 다음과 같다. 같이 보기외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia