Каирская пятиугольная мозаика
Каирская пятиугольная мозаика является двойственной полуправильной мозаикой на плоскости. Мозаика получила такое название по египетскому городу Каир, улицы которого вымощены такими плитками[1][2]. Мозаика является одной из 15 известных равногранных (то есть имеющих грани только одного вида) пятиугольных мозаик. Мозаика также называется сетью Макмагона[3] по имени Перси Александра Макмагона[англ.], опубликовавшего в 1921 году статью «New Mathematical Pastimes» (Новые математические развлечения)[4]. Конвей называет мозаику 4-fold pentille (4-кратный пятипаркет)[5]. Как 2-мерная кристаллическая решётка мозаика имеет те же специальные свойства, что и шестиугольная решётка. Обе решётки являются стандартной реализацией (в терминах М. Котани и Т. Сунада[англ.]) для кристаллических решёток общего вида[6][7]. Геометрия![]() Грани мозаики не являются правильными пятиугольниками — их стороны не равны (они имеют четыре длинные и одну короткую стороны с отношением [8]), а углы пятиугольника составляют (последовательно) . Мозаика имеет конфигурацию грани V3.3.4.3.4. Мозаика похожа на призматическую пятиугольную мозаику[англ.] с конфигурацией грани V3.3.3.4.4, но в этой мозаике два прямых угла находятся рядом. ВариацииКаирская пятиугольная мозаика имеет два вида с пониженной симметрией, которые являются равногранными пятиугольными мозаиками типов 4 и 8:
Двойственная мозаикаМозаика является двойственной для плосконосой квадратной мозаики, состоящей из двух квадратов и трёх равносторонних треугольников вокруг каждой вершины[9]. Связь с шестиугольными мозаикамиЭту мозаику можно рассматривать как объединение двух перпендикулярных шестиугольных мозаик, растянутых в раз. Каждый Шестиугольник делится на четыре пятиугольника. Шестиугольники можно сделать вогнутыми, что приведёт к вогнутым пятиугольникам[10]. Альтернативно, одну шестиугольную мозаику можно оставить правильной, а другую сжать и растянуть (в разных направлениях) в раз, что приводит к образованию 2 видов пятиугольников.
Топологически эквивалентные мозаикиКак двойственная плосконосой квадратной мозаике данная мозаика имеет фиксированные пропорции. Однако её можно подстроить под другие геометрические формы с той же топологической связностью и другой симметрией. Например, эти мозаики топологически идентичны.
Усечённая каирская пятиугольная мозаикаУсечение 4-валентных вершин создаёт мозаику, связанную с многогранником Голдберга[англ.], и ей может быть дан символ {4+,4}2,1. Пятиугольники усекаются до семиугольников. Двойственная мозаика к {4,4+}2,1 имеет только треугольные грани и связана с геодезическим многогранником[англ.]. Её можно рассматривать как плосконосую квадратную мозаику, в которой квадраты заменены четырьмя треугольниками.
Связанные многогранники и мозаикиКаирская пятиугольная мозаика подобна призматической пятиугольной мозаике[англ.] с конфигурацией граней V3.3.3.4.4, двум 2-однородным двойственным мозаикам и двум 3-однородным двойственным, в которых смешаны два типа пятиугольников. Здесь они нарисованы с выделением цветом рёбер[11].
Каирская пятиугольная мозаика находится в последовательности двойственных плосконосых многогранников и мозаик с конфигурацией граней V3.3.4.3.n.
Она также находится в последовательности двойственных плосконосых многогранников и мозаик с конфигурацией граней V3.3.n.3.n.
См. также
Примечания
Литература
Литература для дальнейшего чтения
Ссылки
|
Portal di Ensiklopedia Dunia