Откриће хемијских елемената, свих 118 који су спознати до данас, овде је представљено хронолошким редом.
У чланку је дато следеће:
периодни систем у формату са 18 колона, кодиран бојом према периоду/ери открића;
табела [не]евидентираних открића, са елементима поређаним према датуму кад су први пут дефинисани као чисти (пошто тачан датум открића већине елемената не може тачно да се дефинише):
Бакар је вероватно први кован, рађен и коришћен метал од људи.[1] Оригинално је добијен као изворни метал, а касније топљењем руде. Најраније процене открића бакра упућују на око 9000.п. н. е. и Средњи исток. Ово је био један од најважнијих материјала за људе кроз халколит (бакарно доба) ибронзано доба. Бакарне перлице које датирају из 6000.п. н. е. пронађене су у Чатал Хојуку (Анадолија),[2] а археолочко налазиште Беловоде на планини Рудник у Србији садржи на свету најстарије сигурно датиране доказе топљења бакра — из 5000.п. н. е.[3][4]
Верује се да је топљење олова почело најмање пре 9.000 година, а најстарији оловни артефакт је стауета пронађена у Озирисовом храму на локалитету Абидос — датира из око 3800.п. н. е.[5]
Постоји доказ да је гвожђе било познато пре 5000.п. н. е.[8] Најстарији познати гвоздени предмети које су људи користили су неке перлице метеорског гвожђа, које потиче из Египта — из око 4000.п. н. е. Откриће топљења око 3000.п. н. е. довело је до почетка гвозденог доба — око 1200.п. н. е.;[9] истиче се употреба гвожђа за алате/оруђа и оружја.[10]
Најранија позната употреба угљена за редукцију бакарне, цинчане и оловне руде при производњи бронзе забележена је код старих Египћана и Сумераца.[11]Дијаманти су вероватно већ били познати отприлике 2500.п. н. е.[12] Прве праве хемијске анализе су направљене у 18. веку,[13] а 1789.угљеник се од стране Антоана Лавоазје нашао квалификован као елемент.[14]
Прво је топљен у комбинацији са бакром — око 3500.п. н. е., да би се добила бронза (и тако отпочињало бронзано доба тамо где др гвоздено доба није директно наметало неолитукаменог доба).[15] Најстарији артефакти датирају из око 2000.п. н. е.[16]
Добијен као метал још у антици (пре 1000.п. н. е.), а пронашли су га индијски металурзи с тим да права природа овог метала није била знана у древна времена. Идентификује га као засебан метал средњовековни индијски алхемијски рад односно металургРасаратна Самучаја — године 800,[19] као и алхемичар Парацелзус — године 1526.[20] Изоловао га је Андреас Зигизмунд Маргграф — године 1746.[21]
Кевендиш је био први који је разликовао H 2 од осталих гасова, али Парацелзус је око 1500. — као и Роберт Бојл и Џозеф Пристли — посматрао његову производњу реакцијом јаких киселина с металима. Лавоазје га је именовао 1793. године.[31][32]
Добијен је грејањем жива(II)-оксида и нитрата године 1771, али проналасци нису објављени све до 1777. године. Џозеф Пристли је такође припремио овај нови ваздух до 1774. године, али само га је Лавоазје препознао га прави елемент; именовао га је 1777. године.[33][34]
Елемент је откривен за време студија Данијела Радерфорда на Универзитету у Единбургу.[35] Он је показао да ваздух у којем су животиње дисале, чак и после уклањања издахнутог угљен-диоксида, више не може да омогући свећи да гори. Карл Вилхелм Шеле, Хенри Кевендиш и Џозеф Пристли такође су проучавали елемент отприлике у исто време, а Лавоазје га је именовао 1775/76. године.[36]
Лавоазје је направио први модерни списак елемената — њих 33, укључујући лаке, топле, неекстраховане ’радикале’ и неке оксиде.[44] Онје такође редефинисао термин [хемијски] елемент; док то није било урађено, ниједан метал осим живе није се сматрао елементом.
Грегор је пронашао оксид новог метала у илмениту; Мартин Хајнрих Клапрот је независно открио елемент у рутилу и именовао га. Чиста метална форма је тек добијена 1910. од Метјуа А. Хантера.[49][50]
Рио је открио метал у ванадиниту, али је повукао тврдњу након што је оспорио Иполит-Виктор Коле-Декотил. Сефстрем га је изоловао и именовао, а касније се заправо показало да је Рио био у праву.[55]
Хечет је открио елемент у руди колумбит и именовао га колумбијум. Хајнрих Розе је доказао 1844. године да је елемент различит од тантала и прекрстио га ниобијум, што је било званично прихваћено 1949. године.[56]
Вилијам Хајд Воластон га је открио у узорцима платине из Јужне Америке, али није одмах хтео да објави своје резултате. Намеравао је да га назове по новооткривеном астероидуЦерери, али док је он објавио своје резултате 1804. године церијум је већ узео своје име. Воластон га је назвао по скорије откривеном астероиду Паласу.[58]
Берцелијус и Хизингер су открили елемент у церији, а назвали су га по новооткривеном астероиду Цересу (који се тада сматрао планетом). Клапрот га је открио истовремено и независно у неким узорцима тантала. Мосандер је касније доказао да узорци све три истраживача имају најмање други елемент у себи, лантан.[59]
Тенант је радио на узорцима јужноамеричке платине, паралелно са Воластоном; открио је два нова елемента, а назвао их је осмијум и иридијум. Резултате за иридијум је објавио 1804. године.[61]
Радикални борасик се налази на списку елемената у Лавоазјеовом Елементарном споразуму за хемију из 1789. године.[44] Дана 21. јуна1808. године, Лисак и Тенар су објавили нови елемент у седативној соли; Дејви је 30. јуна објавио изолацију нове супстанце из борне киселине.[65]
Радикални флуорик се налази на списку елемената у Лавоазјеовом Елементарном споразуму за хемију из 1789. године, с тим да се такође радикални муријатик јавља уместо хлора.[44] Андре-Мари Ампер је предвидео елемент аналоган хлору а који се може добити из хидрофлуорне киселине, а између 1812. и 1886. многи истраживачи су покушавали да добију овај елемент. На крају га је изоловао Моасан.[66]
Хамфри Дејви је мислио 1800. да је силицијум једињење, не елемент, а 1808. је предложено данашње име. Године 1811, Луј-Жозеф Тенар је вероватно припремио нечисти силицијум,[71] али Берцелијусу се приписује откриће за добијање чистог елемента 1823. године.[72]
Антоан Лавоазје је предвидео 1787. да је алумина оксид неоткривеног елемента, а 1808. Хамфри Дејви га је покушао раставити. Иако није успео, сугерисао је данашње име. Ханс Кристијан Ерстед је био први који је изоловао метални алуминијум 1825. године.[73]
Мосандер је открио нови елемент у узорцима церије и објавио резултате 1842. године, али је касније показао да је ова лантана садржавала још четири елемента.[77]
Бунзен и Кирхоф су га открили само неколико месеци после цезијума, посматрајући нове спектралне линије у минералу лепидолиту. Бунзен никад није дошао до чистог узорка метала, што је касније учинио Хевеш.[83]
Рајх и Рихтер су га први идентификовали у сфалериту његовом индиго-плавом спректроскопском емисионом линијом. Рухтер је метал изоловао неколико година после.[85]
Жансен и Локјер су посматрали незавнисно жуте линије у соларном спектру које се нису поклапале ни са једним другим елементом. Након неколико година, Ремзи, Клеве и Ланглет су посматрали независно елемент који гради клевеит (отприлике у исто време).[86]
Пол-Емил Лекок де Боабодран је посматрао на пиренском блендном узорку неколико емисионих линија које су одговарале ека-алуминијуму који је Мендељејев предвидео 1871. године; накнадно је изоловао елемент електролизом.[87][88]
У експерименту урађеном 13. јула1898. године, Кирији су забележили повећану радиоактивност у уранијуму добијеном из уранинита, што су објаснили приписавањем непознатом елементу.[103]
Радерфорд и Овенс су открили радиоактивни гас као резултат радиоактивног распада торијума, који су касније изоловали Ремзи и Греј. Године 1900, Фридрих Ернст Дорн је открио дуже трајан изотоп истог гаса преко радиоактивног распада радијума. Пошто је ’радон’ прво коришћен за специфично одређивање Дорновог изотопа пре него што је постао елемент са овим именом, честе се погрешно приписују заслуге за потоње уместо прво поменуто.[105][106]
Фридрих Оскар Гизел „Фриц” је добио из уранинита супстанцу која је имала својства налик онима лантана, а назвао је еманијум.[107]Андре-Луј Дебјерн је претходно огласио откриће новог елемента актинијума који је наводно сличан титанијуму и торијуму; елементи су грешком идентификовани као идентични и Дебјерново име је изабрано, иако у ретроспективи Дебјернова супстанца није могла да има садржано много стварног елемента 89.[108]
Фон Велсбах је доказао да је стари итербијум такође садржавао и нови елемент, који је он назвао касиопеијум. Урбен је такође ово доказао истовремено, али његови узорци су били веома нечисти и садржавали су нови елемент само у траговима. Упркос овоме, његово одабрано име лутецијум постало је званично.[109]
Геринг и Фајанс су дошли до првог изотопа овог елемента који је Мендељејев предвидео 1871. године као чиниоца природног распада 238U.[112] Оригинално је заправо изолован 1900. године од Вилијама Крукса, који нажалост тада није препознао да је у питању био нови елемент.[113]
Жорж Урбен је тврдио да је пронашао елемент у остацима ретких земних метала, док је га Владимир Вернадски независно пронашао у ортиту. Ниједна тврдња о проналаску није потврђена због избијања Првог светског рата, нити је иједна могла да буде потврђена касније пошто хемија коју су они изложили не одговара оној тренутно познатој за хафнијум. После рата Костер и Де Хевеш су га пронашли путем спектроскопске анализе икс зрачењем у норвешком циркону.[114] Хафнијум је био последњи стабилни елемент који је откривен.[115]
Перијер и Сегре су открили нови елемент у узорку молибдена који је коришћен у циклотрону; први је откривени систетички елемент, мада је касније откривено да се јавља природно у веома малим количинама односно у траговима. Мендељејев га је предвидео 1871. као ека-манган.[116][117][118]
Маргерит Пере га је открила као продукт распада 227Ac.[119] Францијум је последњи елемент који се може наћи у природи, а остали се морају синтетисати у лабораторији; битно је напоменути да су четири од „синтетичких” елемената који су касније били откривени (плутонијум, нептунијум, астат и прометијум) ипак пронађена у коначници у малим количина у траговима у природи.[120]
Добијен је бомбардовањем бизмута са алфа честицама.[121] Касније је откривено да се јавља и природно у веома малим количинама (<25грама у Земљиној кори).[122]
Вероватно је први пут припремљен 1942. године бомбардовањем неодијума и празеодијума неутронима, али издвајање елемента није било могуће спровести. Изолације је изведена под Пројектом Менхетн године 1945.[125]
^Ferchault de Réaumur, R-A (1722). L'art de convertir le fer forgé en acier, et l'art d'adoucir le fer fondu, ou de faire des ouvrages de fer fondu aussi finis que le fer forgé [English translation from 1956]. Paris, Chicago.
^Weeks, Mary Elvira (1933). „III. Some Eighteenth-Century Metals”. The Discovery of the Elements. Easton, PA: Journal of Chemical Education. стр. 21. ISBN0-7661-3872-0.
^ абSarton, George. Introduction to the History of Science.
^Ramsay, W.; Gray, R. W. (1910). „La densité de l'emanation du radium”. Comptes rendus hebdomadaires des séances de l'Académie des sciences. 151: 126—128.
^Yoshihara, H. Kenji (2008). „Nipponium as a new element (Z=75) separated by the Japanese chemist, Masataka Ogawa: A scientific and science historical re-evaluation”. Proceedings of the Japan Academy, Series B. 84 (7): 232—245. Bibcode:2008PJAB...84..232Y. doi:10.2183/pjab.84.232.
^Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; Katori, Kenji; Koura, Hiroyuki; Kudo, Hisaaki; Ohnishi, Tetsuya; Ozawa, Akira; Suda, Toshimi; Sueki, Keisuke; Xu, HuShan; Yamaguchi, Takayuki; Yoneda, Akira; Yoshida, Atsushi; Zhao, YuLiang (2004). „Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn,n)278113”. Journal of the Physical Society of Japan. 73 (10): 2593—2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
^Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B.; Mezentsev, A.; Iliev, S.; Subbotin, V.; Sukhov, A.; Buklanov, G.; Subotic, K.; Itkis, M.; Moody, K.; Wild, J.; Stoyer, N.; Stoyer, M.; Lougheed, R. (октобар 1999). „Synthesis of Superheavy Nuclei in the 48Ca + 244Pu Reaction”. Physical Review Letters. 83 (16): 3154. Bibcode:1999PhRvL..83.3154O. doi:10.1103/PhysRevLett.83.3154.
^Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B.; Mezentsev, A.; Iliev, S.; Subbotin, V.; Sukhov, A.; Ivanov, O.; Buklanov, G.; Subotic, K.; Itkis, M.; Moody, K.; Wild, J.; Stoyer, N.; Stoyer, M.; Lougheed, R.; Laue, C.; Karelin, Ye.; Tatarinov, A. (2000). „Observation of the decay of 292116”. Physical Review C. 63 (1): 011301. Bibcode:2000PhRvC..63a1301O. doi:10.1103/PhysRevC.63.011301.
^Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Gulbekian, G.; Bogomolov, S.; Gikal, B.; Mezentsev, A.; Iliev, S.; Subbotin, V.; Sukhov, A.; Subotic, K.; Zagrebaev, V.; Vostokin, G.; Itkis, M.; Moody, K.; Patin, J.; Shaughnessy, D.; Stoyer, M.; Stoyer, N.; Wilk, P.; Kenneally, J.; Landrum, J.; Wild, J.; Lougheed, R. (2006). „Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions”. Physical Review C. 74 (4): 044602. Bibcode:2006PhRvC..74d4602O. doi:10.1103/PhysRevC.74.044602.
^Oganessian, Yu. Ts.; Utyonkov, V. K.; Dmitriev, S. N.; Lobanov, Yu. V.; Itkis, M. G.; Polyakov, A. N.; Tsyganov, Yu. S.; Mezentsev, A. N.; Yeremin, A. V.; Voinov, A.; Sokol, E.; Gulbekian, G.; Bogomolov, S.; Iliev, S.; Subbotin, V.; Sukhov, A.; Buklanov, G.; Shishkin, S.; Chepygin, V.; Vostokin, G.; Aksenov, N.; Hussonnois, M.; Subotic, K.; Zagrebaev, V.; Moody, K.; Patin, J.; Wild, J.; Stoyer, M.; Stoyer, N.; et al. (2005). „Synthesis of elements 115 and 113 in the reaction 243Am + 48Ca”. Physical Review C. 72 (3): 034611. Bibcode:2005PhRvC..72c4611O. doi:10.1103/PhysRevC.72.034611.
^Oganessian, Yu. Ts.; Abdullin, F. Sh.; Bailey, P. D.; Benker, D. E.; Bennett, M. E.; Dmitriev, S. N.; Ezold, J. G.; Hamilton, J. H.; Henderson, R. A.; Itkis, M. G.; Lobanov, Yu. V.; Mezentsev, A. N.; Moody, K. J.; Nelson, S. L.; Polyakov, A. N.; Porter, C. E.; Ramayya, A. V.; Riley, F. D.; Roberto, J. B.; Ryabinin, M. A.; Rykaczewski, K. P.; Sagaidak, R. N.; Shaughnessy, D. A.; Shirokovsky, I. V.; Stoyer, M. A.; Subbotin, V. G.; Sudowe, R.; Sukhov, A. M.; Tsyganov, Yu. S.; et al. (април 2010). „Synthesis of a New Element with Atomic Number Z=117”. Physical Review Letters. 104 (14): 142502. Bibcode:2010PhRvL.104n2502O. PMID20481935. doi:10.1103/PhysRevLett.104.142502.
Литература
Ferchault de Réaumur, R-A (1722). L'art de convertir le fer forgé en acier, et l'art d'adoucir le fer fondu, ou de faire des ouvrages de fer fondu aussi finis que le fer forgé [English translation from 1956]. Paris, Chicago.