КорелограмаКорелограма ![]() ![]() В аналізі даних корелограмою називається зображення статистики кореляції. Наприклад, в аналізі часових рядів, корелограма, також знана як автокореляційна діаграма, являє собою графік зразка автокореляцій , в порівнянні з , (часові затримки). Якщо використовується взаємно-кореляційна функція, результат називають поперечною корелограмою. Корелограми є широко використовуваним інструментом для перевірки випадковості в наборі даних. Випадковість знаходиться шляхом обчислення автокореляції для значень даних при різних часових затримках. Якщо випадково, такі автокореляції будуть близькі до нуля для будь-яких і всіх розділень часових затримок. Якщо невипадкове, то один або більше з автокореляції буде істотно відмінна від нуля. Крім того, корелограми використовують в ідентифікації системи для Box-Jenkins моделі авторегресії ковзного середнього часового ряду. Автокореляція повинна бути близькою до нуль-випадковості, якщо аналітик не перевіряє випадковість, то справедливість багатьох з статистичних висновків попадає під сумнів. Корелограми є чудовим способом перевірки такої випадковості. ЗастосуванняКорелограми допомагають знайти відповіді на такі питання:
ЗначенняВипадковість (разом з фіксованою моделлю, фіксованими змінними та фіксованим розподілом) є одним з чотирьох припущень, які лежать в основі всіх процесів вимірювань. Припущення випадковості дуже важливе з таких причин:
, Де S — це стандартне відхилення даних. Не зважаючи на те, що ця формула дуже поширення, її результати не мають цінності, якщо не триматися припущеної випадковості.
Якщо дані не є випадковими, ця модель — некоректна та не є дійсною, тому оцінки параметрів стають безглуздими. Оцінка автокореляційКоефіцієнт автокореляції:
де ch — автоковаріаційна функція. c0 — дисперсія функції Отримане значення rh буде в діапазоні від −1 до 1. Альтернативні оцінкиІнколи використовують наступну формулу для автоваріації функції: Хоча це визначення має менший відхил, (1/N) має деякі бажані статистичні властивості. Цю формулу часто використовують в літературі про статистику. Статистичні висновкиВ один графік можна провести верхню та нижню межі для автокореляції за рівнем значущості: , з як передбачувана автокореляція для запізнення . Якщо автокореляція вище (нижче), ніж ця верхня (нижня) межа, то нульова гіпотеза, тобто що немає автокореляції в самій затримці та за її межами відкидається на рівні значущості. Цей тест є наближеним і припускає, що часовий ряд є гаусовим. У наведеній вище z1-α/2 квантиль нормального розподілу; SE — стандартна помилка, яка може бути обчислена за формулою Бартлетта:
На картинці вище ми можемо відкинути нульову гіпотезу про те, що немає автокореляції між часовими точками, які є суміжними (запізнення = 1). Для інших періодів ніхто не може відкинути нульову гіпотезу про відсутність автокореляції. Слід зазначити, що існують дві різні формули для генерації області впевненості:
Програмне забезпеченняКорелограми доступні у більшості статистичного програмного забезпечення загального призначення. Для створення такого типу графіка в R можна використовувати функції ACF і PACF. Див. також
|
Portal di Ensiklopedia Dunia