Каон
Каон ( K-мезон) и ознака К[nb 1] — која група од четири мезони, карактеристична по квантниот број наречен чудност. Во кварковиот модел се подразбира дека тие се сврзани состојби на еден чуден кварк (или антикварк) или горен или долен антикварк (или кварк). Каоните се покажале како изобилен извор на информации, за природата на основните заемодејства, од нивното откривање во космичките зраци во 1947 година. Тие биле од суштинско значење, за воспоставувањето на темелите на стандардниот модел на честичната физика, како што е кварковиот модел на хадроните и теоријата за мешање на кварковите (подоцна теоријата е наградена со Нобеловата награда за физика во 2008 година). Каоните одиграле значајна улога во нашето разбирање на основните закони за запазување: CP-нарушувањето, појава која ја создава асиметријата на набљудуваната материја-антиматерија во универзумот, откриена во каонскиот систем во 1964 година (што било потврдено со Нобелова награда во 1980 година). Понатаму, директното CP-нарушување било откриено во каонските распаѓања во раните 2000-ти години, од страна на експериментот NA48 во ЦЕРН и експериментот КТеВ во Фермилаб. Основни својства![]() π+ , 1 π− ) е процес кој ги вклучува заедно слабото и силното заемодејство. Слаби заемодејства: чуден антикварк ( s ) на каонот се трансмутира во горен антикварк ( u ) преку оддавање на W+ бозони; W+ бозонот последователно се распаѓа на долен атикварк ( d ) и на горен кварк ( u ). Силни заемодејства : горен кварк ( u ) оддава глуон ( g ) кој се распаѓа на долен кварк ( d ) и долен антикварк ( d ). Четирите каони се :
Како што покажува кварковниот модел, укажува на тоа дека каоните создаваат два пара на изоспин; односно, дека тие припаѓаат на основното претставување на SU (2) наречена 2. Еден пар на чудност +1 го содржи
[a] Силна квантно механичка состојба. Нема дефинитивен животен век (види ги белешките за Каон подолу) [b] Слаба квантно механичка состојба. Недостасува шминка на малото нарушување на ЦП терминот (видете ја забелешката за неутралните каони подолу). [c] Масите на Иако
(Погледајте ја дискусијата за неутрално каонско мешање подолу.) Експериментални набљудувања направени во 1964 година, покажале дека К-долгиот ретко се распаѓа на два пиона што било причина за откривањето на CP-нарушувањето (види подолу). Главни модови на распаѓање за
Модовите на распаѓање за K- се конјугативно наелектризирани на оние споманти погоре во табелата. Чудност
Во 1947 година, Џорџ Рочестер и Клифорд Чарлс Батлер од Манчестерскиот универзитет, објавиле две фотографии од Вилсоновата комора, од настаните предизвикани од космичките зраци, од кои едната покажува дека се работи за неутрална честичка која се распаѓа на два наелектризирани пиони, а другата покажува дека се работи за наелектризирана честичка која се распаѓа на наелектризиран пион и нешто неутрално. Проценетата маса на новите честички била многу груба, околу половина од масата на протонот. Повеќето примери за овие „V-честички“ доспевале доста бавно. Првото важно постигнување било добиено во Калтех, каде што Вилсоновата комора била однесена на планината Вилсон, за поголема изложеност на космички зраци. Во 1950 година, биле пријавени 30 наелектризирани и 4 неутрални V-честички. Инспирирани од ова, во текот на следните неколку години биле направени бројни набљудувања на планините, а до 1953 година била усвоена следната терминологија: „L-мезон“ означувајќи мион или пион. „K-мезон“ означувал средна честичка, со маса помеѓу пионот и нуклеонот. „Хиперон“ означувал каква било честичка потешка од нуклеонот. Распаѓањата биле исклучително бавни; типичен животен век бил од редот на 10−10 s. Меѓутоа, производството во пион-протонските реакции продолжило многу побрзо, со временска скала од 10−23 s. Проблемот на ова несогласување бил решен од страна на Абрахам Пајс, кој го претставил новиот квантен број наречен „чудност“, кој е заштитен од силните заемнодехства, но нарушен од слабите заемодејства. Необичните честички се појавуваат обилно за време на „здруженото производство“ на една необична и антинеобична честичка заедно. Наскоро било покажано дека ова не може да биде мултипликативен квантен број, бидејќи тоа требало да овозможи реакции, кои никогаш не биле видени во новите синхротрони, кои биле пуштенби во употреба во Брукхејвенската национална лабораторија во 1953 година и во Лоренс Берклиевата лабораторија во 1955 година. Нарушување на парностаДве различни распаѓања биле пронајдени кај наелектризираните чудни мезони:
Следствената парност на пионот е P = -1, а парноста е мултипликативен квантен број. Поради тоа, двете конечни состојби имаат различни парности (P = +1 и P = -1, соодветно). Се мислело дека првичните состојби, исто така, треба да имаат различни парности, па оттука да бидат две различни честички. Меѓутоа, со попрецизни мерења, не била пронајдена разлика помеѓу масите и животните векови на секоја од нив соодветно, што покажува дека тие се иста честичка. Ова било познато како τ-θ загатка. Ова било разрешено само со откривањето на нарушување на парноста прислабите заемодејства. Бидејќи мезоните се распаѓаат низ слаби заемодејства, парноста не се зачувува, а двата распади се всушност распаѓања на истата честичка,[5] сега наречена К+. CP-нарушување во неутралните мезонски осцилацииПрвично се мислело дека иако парноста била нарушена, симетријата на CP- (парностa на полнежот) симетријата била запазена. Со цел да се разбере откривањето на CP-нарушувањето, неопходно е да се разбере мешањето на неутралните каони; оваа појава не бара CP-нарушување, но тоа е замислата во која првпат било забележано CP-нарушувањето. Мешање на неутрални каони![]() K0 се претвора во долен кварк преку успешно впивање на два W-бозони со спротивен полнеж. Дплниот антикварк во анти- K0 се претвора во чуден антикварк оддавајќи ги истите бозони. Бидејќи неутралните каони поседуваат чудност, тие не можат да бидат свои античестички. Тогаш, мора да постојат два различни неутрални каона, кои се разликуваат за две единици на чудност. Прашањето било како да се утврди присуството на овие два мезона. Решението користело појава наречена осцилации на неутрална честичка, со кое овие два вида мезони можат да се претворат еден во друг преку слабите заемодејства, кои предизвикуваат нивно распаѓање во пиони (Погледајте ја сликата од спротива). Овие осцилации најпрво биле истражувани од страна на Мареј Гел-Мен и Абрахам Пајс заедно. Тие ја земале предвид CP-инваријантноста за временскиот развој на состојбите со спротивна чудност. Во матричен запис тоа би изгледало: каде што ψ е квантната состојба на системот, одредена од амплитудите на постоењето во секоја од двете основни состојби (кои се a и b за време t = 0). Дијагоналните елементи (М) на Хамилтонијанот се должат на силно заемнодејствувачката физика, која ја зачувува чудноста. Двата дијагонални елемента мора да бидат еднакви, бидејќи честичката и античестичката имаат еднакви маси, во отсуство на слаби заемодејства. Елементите надвор од дијагоналата, кои ги мешаат честичките со спротивна чудност, се должат на слабите заемодејства; CP-симетријата бара од нив да бидат вистински. Последицата матрицата H да биде реална е веројатноста дека двете состојби засекогаш ќе осцилираат нанапред и наназад. Меѓутоа, ако било кој дел од матрицата е имагинарен, што е забрането од CP-симетријата, тогаш дел од комбинацијата ќе се намали со текот на времето. Делот кој се намалува може да биде или едната компонента (а) или другата (b) или мешавина од двете. МешањеСостојбата на квантизираните динамички системи се добиваат со дијагонализација на оваа матрица. Ова дава нови квантизирани динамички вектори, кои можеме да ги наречеме K1 кои се збир на две состојби на спротивната чудност, и K2, која е разликата. Двете се состојби на квантизирани динамички системи на CP со спротивни состојби на квантизирани динамички системи; K1 има CP = +1, и K2 има CP = −1 Бидејќи конечната состојба со два пиони, исто така, има CP = +1, само K1 може да се распаѓа на овој начин. К2 мора да се распаѓа на три пиони. Бидејќи масата на К2 е само малку поголема од збирот на масите на трите пиони, ова распаѓање се одвива многу бавно, околу 600 пати поспоро од распаѓањето на К1 на два пиони. Овие два различни начини на распаѓање биле набљудувани од Леон Ледерман и неговите соработници во 1956 година, утврдувајќи го постоењето на две слаби состојби на квантизирани динамички системи (состојби со одреден животен век при распаѓање преку слабата сила) на неутралните каони. Овие две слаби состојби на квантизирани динамички системи се наречени ОсцилацииПрвичниот чист зрак на РегенерацијаЗрак од неутрални каони се распаѓа во лет, така што краткотрајниот CP-нарушувањеДодека се обидувале да ги потврдат резултатите на Едеар, Ј. Кристенсон, Џејмс Кронин, Вал Фич и Рене Турлеј од Принстонскиот универзитет пронашле распаѓање на Произлегува дека иако
и слично за Поврзано
Забелешки и наводи
Библиографија
|
Portal di Ensiklopedia Dunia