Ромбоікосододекаедр![]() ![]() ![]() Ромбоікосододека́едр[1][2][3] — напівправильний багатогранник, який складається з 12 правильних п'ятикутників, 30 квадратів і 20 трикутників, архімедове тіло. Має ікосаедричний тип симетрії. В кожній з вершин сходяться трикутник, п'ятикутник і 2 квадрати. Ромбоікосододекаедр можна подати як додекаедр, зрізаний за вершинами і ребрами (при цьому трикутники відповідають вершинам додекаедра, а квадрати — ребрам), або як ікосаедр, зрізаний так само (при цьому п'ятикутники відповідають вершинам ікосаедра, а квадрати — ребрам), або ж як зрізаний ікосододекаедр, чим він по суті і є. ![]() Декартові координатиДекартові координати вершин ромбоікосододекаедра з довжиною ребра 2 із центром у початку координат є парними перестановками з:[4]
Ортогональні проєкціїРомбоікосододекаедр має шість особливих ортогональних проєкцій, центрованих на вершині, на ребрах двох типів і гранях трьох типів: трикутнику, квадраті та п'ятикутнику. Останні дві відповідають площинам Коксетера А2 і Н2.
Сферична мозаїкаРомбоікосододекаедр також можна зобразити у вигляді сферичної мозаїки та проєктувати на площину за допомогою стереографічної проєкції . Ця проєкція є конформною, зберігаючи кути, але не площі та довжини. Прямі лінії на кулі проєктуються на площину як дуги кола.
Пов'язані многогранники
Див. такожПримітки
Література
|
Portal di Ensiklopedia Dunia