Числа СерпінськогоЧислом Серпінського називається таке непарне натуральне число k, що для довільного натурального n число є складеним. Якщо, натомість, елементи множини з тими ж властивостями мають форму , числа k називаються числами Різеля. Відомі числа СерпінськогоПослідовність відомих чисел Серпінського починається так:
Те, що 78557 є числом Серпінського, довів Джон Селфрідж 1962 року. Він показав, що кожне число виду ділиться принаймні на одне з чисел покриваючої множини {3, 5, 7, 13, 19, 37, 73}. Аналогічно, 271129 також є числом Серпінського: кожне число виду ділиться принаймні на одне число з покриваючої множини {3, 5, 7, 13, 17, 241}. Усі відомі числа Серпінського мають подібні множини.[1] Проблема СерпінськогоЗадача пошуку мінімального числа Серпінського відома як проблема Серпінського. 1967 року Селфрідж і Серпінський припустили, що найменшим числом Серпінського є 78557. Для доведення цієї гіпотези достатньо показати, що всі менші непарні числа не є числами Серпінського. Станом на листопад 2018 року це твердження залишалося довести для п'яти чисел[2]: 21181, 22699, 24737, 55459 і 67607. У проєкті добровільних розподілених обчислень PrimeGrid для кандидатів на числа Серпінского перевіряють на простоту числа для всіх k, що залишаються. У жовтні 2016 року було вилучено кандидата k = 10223: у PrimeGrid знайшли просте число . Це число складається з 9 383 761 цифр.[2] Див. такожПосилання
Примітки
|
Portal di Ensiklopedia Dunia