Выпадковая падзея — вынік пэўнага выпрабавання (назірання эксперыменту), які можа як адбыцца, так і не адбыцца. Паняцце выпадковай падзеі з’яўляецца адным з асноўных паняццяў тэорыі імавернасцей[1]:7.
Прыклады
Прастора элементарных падзей для шасціграннага гульнявога кубіка
Калі выпрабаванне гэта кіданне сіметрычнай манеты на гарызантальную паверхню, то магчымымі падзеямі будуць выпадзенне рэшкі і выпадзенне арла (пазначаюцца як Р і А, у англамоўнай літаратуры і ад heads and tails).
Пры падкіданні шасціграннага кубіка магчымымі падзеямі будуць выпадзенне 1, 2, 3, 4, 5 або 6 ачкоў. Такія падзеі называюцца элементарнымі. У гэтым выпрабаванні акрамя элементарных магчымы і больш складаныя падзеі, напрыклад выпадзенне цотнай[en] колькасці ачкоў, выпадзенне няцотнай колькасці ачкоў, выпадзенне колькасці ачкоў, большай за 4. Такія падзеі можна запісаць як падмноствы, , мноства ўсіх магчымых зыходаў .
Прасторай элементарных падзей называецца мноства ўсіх магчымых зыходаў некаторага выпрабавання. Падмноствы называюцца падзеямі. Аднаэлементныя падмноствы называюцца элементарнымі падзеямі (дзеля спрашчэння элементарныя падзеі атаясамліваюцца з элементамі ).
Пустое падмноства называецца немагчымай падзеяй. Падмноства, роўнае самому , называецца верагоднай падзеяй[1]:8.
У выпадку калі прастора элементарных падзей — канечнае мноства[en], падзеямі з’яўляюцца ўсе ягоныя падмноствы. У агульным выпадку прастора элементарных падзей можа быць бясконцым мноствам[en], тады падзеямі з’яўляюцца неабавязкова ўсе ягоныя падмноствы, а толькі тыя, што ўваходзяць у некаторую алгебру або σ-алгебру мностваў[1]:9.
Аперацыі над падзеямі і сувязь з тэорыяй мностваў
Дыяграма Эйлера[en] для падзей і . Падзея можа адбыцца толькі тады, калі адбылася падзея ( — вынік ).
Існуе шэраг матэматычных аперацый[en] над падзеямі, якія адпавядаюць аперацыям над мноствамі, прынятымі ў тэорыі мностваў. Пры гэтым тэрміналогія тэорыі імавернасцей і тэорыі мностваў адрозніваецца[1]:9-10: