Закон захавання энергііЗакон захавання энергіі, або закон захавання і пераўтварэння энергіі — асноўны агульны закон прыроды, згодна з якім, энергія любой замкнёнай сістэмы пры ўсіх з’явах і працэсах у ёй, застаецца нязменнай (захоўваецца). Энергія пры гэтым толькі пераўтвараецца з аднаго віду ў другі і пераразмяркоўваецца паміж часткамі сістэмы. С фундаментальнага пункту погляду, згодна з тэарэмай Нётэр, закон захавання энергіі — вынік аднароднасці часу, то-бок незалежнасці законаў фізікі ад моманту часу, у які сістэма разглядаецца. У гэтым сэнсе закон захавання энергіі з’яўляецца ўсеагульным, г.зн. уласцівым сістэмам самай рознай фізічнай прыроды. Аднак пэўны выгляд гэтага закона можа істотна адрознівацца ў разнастайных адмысловых выпадках. У розных раздзелах фізікі па гістарычных прычынах закон захавання энергіі быў адкрыт незалежна, таму ўводзіліся розныя віды энергіі. І толькі адносна нядаўна навука даказала, что многія з гэтых відаў энергіі сутнасна тоесныя між сабой, як напрыклад, кінетычная і цеплавая энергіі. Фармулюючы закон, кажуць, што магчымы пераход энергіі аднаго віду ў другі, але поўная энергія сістэмы, роўная суме асобных відаў энергіі, захоўваецца. З прычыны ўмоўнасці выдзялення асобных відаў энергіі такі падзел на віды не заўсёды адназначны. Амаль кожны раздзел фізікі мае сваю фармулёўку закона захавання энергіі. Напрыклад, у класічнай механіцы быў сфармуляваны закон захавання механічнай энергіі, у тэрмадынаміцы — першы пачатак тэрмадынамікі, а ў электрадынаміцы — тэарэма Пойнтынга. На матэматычны погляд закон захавання энергіі раўназначны сцвярджэнню, што сістэма дыферэнцыяльных ураўненняў, якія апісваюць дынаміку пэўнай фізічнай сістэмы, мае першы інтэграл руху, звязаны з сіметрычнасцю ўраўненняў адносна зруху па часе. Адмысловыя выпадкі закону захавання энергііКласічная механікаУ галілеевай механіцы закон захавання энергіі гістарычна мае адмысловую форму: так званы закон захавання механічнай энергіі, які гучыць наступным чынам[1]:
Могуць адбывацца толькі пераўтварэнні патэнцыяльнай энергіі ў кінетычную і наадварот, але поўны запас энергіі сістэмы змяніцца не можа. Заўвага: умова адсутнасці сіл рассейвання (напрыклад, трэння, вязкасці) істотная, бо пры іх наяўнасці механічная энергія пераходзіць у іншыя, немеханічныя, формы (напрыклад, у цеплавую энергію). Абазначым праз K кінетычную энергію сістэмы, а праз U — патэнцыяльную. Тады закон захавання механічнай энергіі прымае выгляд: ТэрмадынамікаУ тэрмадынаміцы закон захавання энергіі быў адкрыт у выглядзе першага пачатку тэрмадынамікі, які гучыць так[2]:
Няхай Q абазначае цеплыню, перададзеную сістэме, ΔU — змяненне ўнутранай энергіі, а праз A абазначана вонкавая работа, здзейсненая сістэмай. Тады першы пачатак тэрмадынамікі можна запісаць у выглядзе: ГідрадынамікаУ гідрадынаміцы ідэальнай вадкасці закон захавання энергіі фармулюецца ў выглядзе ўраўнення Бернулі. Няхай разглядаецца стацыянарнае цячэнне ідэальнай (невязкай) несціскальнай вадкасці ў гравітацыйным полі. Будзем таксама лічыць, што справядлівыя законы класічнай механікі. Тады ўздоўж кожнай лініі патоку наступная сума пастаянная[3]: дзе
Заўвага: для розных ліній патоку значэнні гэтай сумы могуць адрознівацца. ЭлектрадынамікаУ электрадынаміцы закон захавання энергіі фармулюецца ў выглядзе тэарэмы Умава-Пойнтынга[4] (часам яе называюць тэарэмай Пойнтынга). У гэтым раздзеле выкарыстоўваецца гаўсава сістэма адзінак. Няхай u — удзельная ўнутраная энергія (або ўнутраная энергія адзінкі аб’ёму) асяроддзя ў наваколлі пэўнага пункта. Пад велічынёй u будзем разумець шчыльнасць усяе ўнутранай энергіі, а не толькі яе электрамагнітную частку. Тады тэарэма Умава-Пойнтынга ў дыферэнцыяльнай форме выглядае так[5]: дзе S — так званы вектар Пойнтынга, які азначаюць наступным чынам: Тэарэма Умава-Пойнтынга ў інтэгральнай форме: дзе — пэўны аб’ём, — паверхня, якая абмяжоўвае гэты аб’ём, — вектар элемента паверхні накіраваны па нармалі ўнутр. Такім чынам,
Заўвага: у падручніках, фармулюючы тэарэму Умава-Пойнтынга, у велічыню u часта ўключаюць толькі электрамагнітную энергію, што прыводзіць да з’яўлення дадатковага складніка ў правай частцы. Таму трэба ўважліва глядзець, як у падручніку азначаюць велічыню u. Спецыяльная тэорыя адноснасціНяхай выбрана нейкая інерцыяльная сістэма адліку (ІСА), у якой знаходзіцца назіральнік. Каб пазбегнуць блытаніны з сістэмай адліку, пад целам будзем разумець пэўную сістэму аб’ектаў разам з узаемадзеяннем паміж імі. Свабодным целам будзем называць цела, на якое не ўздзейнічаюць вонкавыя сілы. Поўнай энергіяй цела называецца велічыня: дзе — так званая маса руху цела, якую азначаюць як
Заўвага! Увогуле кажучы, маса спакою цела не роўная суме мас спакою яго складнікаў (састаўных частак)[6][7]. Такім чынам, закон захавання энергіі гучыць так:
Згодна з пастулатамі СТА скорасць святла пастаянная і не залежыць ад выбару ІСА, таму гэта сцвержданне раўназначнае наступнаму:
Па сутнасці, гэта азначае, што маса і энергія эквівалентныя. З эквівалентнасці масы і энергіі ў СТА вынікаюць даволі цікавыя і незвычайныя праявы. Напрыклад, маса спакою цела пры яго награванні будзе павялічвацца[7]. У выніку, чым гарачэйшае цела, тым яно цяжэйшае. Аднак на практыцы заўважыць цеплавы прырост масы даволі складана з прычыны яго нязначнасці. Аднак неабходна адзначыць, што велічыня поўнай энергіі залежыць ад выбару ІСА назіральніка. Ад гэтай залежнасці можна пазбавіцца наступным чынам. У СТА мадэллю прасторы-часу служыць чатырохмерная прастора Мінкоўскага. Энергія і звычайны трохмерны імпульс аб’ядноўваюцца ў адзін 4-вектар энергіі-імпульсу (або проста чатырохімпульс): дзе p = ( px , py , pz ) — трохмерны імпульс, Адной з галоўных уласцівасцей 4-імпульсу з’яўляецца нязменнасць яго модуля (у метрыцы Мінкоўскага) пры пераўтварэннях Лорэнца, якія адпавядаюць пераходам паміж рознымі ІСА. У выніку, законы захавання энергіі і імпульсу перастаюць быць незалежнымі і аб’ядноўваюцца ў адзін закон захавання 4-імпульсу:
Матэматычна гэта выглядае так[6]: дзе m0 — маса спакою цела, p — абсалютная велічыня трохмернага імпульсу цела. ГісторыяЗакон захавання энергіі і сіметрыяФіласофскае значэнне законуАдкрыццё закона захавання энергіі паўплывала не толькі на развіццё фізічных навук, але і на філасофію XIX стагоддзя. З іменем Роберта Маера звязана ўзнікненне так званага прыродазнаўчага энергетызму — светапогляду, які выводзіць усе праявы сусвету з энергіі, яе руху і пераўтварэння. У прыватнасці, у гэтым светапоглядзе матэрыя і дух ёсць праявамі пэўных відаў энергіі. Галоўным прадстаўніком гэтага напрамку энергетызму быў нямецкі хімік Вільгельм Оствальд, сутнасць ягонай філасофіі можна выказаць заклікам «Не губляй дарэмна ніякай энергіі, выкарыстоўвай яе!»[8] Крыніцы
Літаратура
|
Portal di Ensiklopedia Dunia