Океанска звучна томографија![]() Океанска звучна томографија — техника која се користи за мерење на температурите и струите на големите региони на океанот.[1][2] На скалите на океанскиот слив, оваа техника е позната и како звучна топломерија. Техниката се потпира на прецизно мерење на времето потребно за звучните сигнали за патување помеѓу два инструменти, еден звучен извор и еден приемник, разделени со опсег од 100 до 5,000 километри. Ако локациите на инструментите се познати прецизно, мерењето на времето на летот може да се користи за да се заклучи брзината на звукот, просечно пресметана во текот на звучната патека. Промените во брзината на звукот првенствено се предизвикани од промените во температурата на океанот, па оттука мерењето на времето на патување е еквивалентно на мерењрто на температурата. А 1 °C (1.8 °F) промената на температурата одговара на околу 4 метри во секунда промена на брзината на звукот. Океанографскиот експеримент кој користи томографија обично користи неколку парови извор-приемник во низата што ја мери површината на океанот. МотивацијаМорската вода е електричен спроводник, така што океаните се непроѕирни за електромагнетна енергија (на пример, светлина или радар). Меѓутоа, океаните се прилично проѕирни за акустика со ниска честота. Океаните спроведуваат звук многу ефикасно, особено звукот на ниски честоти, т.е. помалку од неколку стотици херци.[3] Овие својства ги мотивирале Валтер Манк и Карл Вунш [4][5] да предложат „звучна томографија“ за мерење на океаните кон крајот на 1970-тите. Предностите на звучниот пристап за мерење на температурата се двојни. Прво, големи површини од внатрешноста на океанот може да се измерат со далечинско сензорирање. Второ, техниката природно ги просекува малите флуктуации на температурата (т.е. бучавата) кои доминираат во варијабилноста на океаните. Од својот почеток, идејата за набљудување на океанот била поврзана со проценка на состојбата на океанот користејќи модерни нумерички модели на океанот и техники за асимилирање на податоците во нумерички модели. Како што созревала техниката на набљудување, така созревале и методите на асимилација на податоците и компјутерската моќ потребна за извршување на тие пресметки. Мултипатни пристигнувања и томографија![]() Еден од интригантните аспекти на томографијата е тоа што го користи фактот дека звучните сигнали патуваат по множество од генерално стабилни патеки на зраци. Од еден пренесен звучен сигнал, оваа група зраци предизвикува повеќекратно пристигнување на приемникот, времето на патување на секое пристигнување одговара на одредена патека на зракот. Најраните пристигнувања одговараат на зраците кои патуваат подлабоко, бидејќи овие зраци патуваат таму каде што брзината на звукот е најголема. Патеките на зраците лесно се пресметуваат со помош на компјутери („следење на зраци") и секоја патека на зраци генерално може да се идентификува со одредено време на патување. Повеќекратните времиња на патување ја мерат просечната брзина на звукот на секоја од повеќекратните звучни патеки. Овие мерења овозможуваат да се заклучат аспектите на структурата на температурните или тековните варијации како функција на длабочината. Решението за брзината на звукот, па оттука и температурата, од времето на звучното патување е инверзен проблем. Интегрирачко својство на звучните мерења со долг дострелОкеанската звучна томографија ги интегрира температурните варијации на големи растојанија, односно измерените времиња на патување произлегуваат од акумулираните ефекти од сите температурни варијации долж звучната патека, па оттука мерењата со техниката се инхерентно просечни. Ова е важно, уникатно својство, бидејќи сеприсутните турбулентни и внатрешни бранови одлики на океанот обично доминираат во сигналите при мерењата во поединечни точки. На пример, мерењата со топломери треба да се справат со оваа 1-2 °C бучава, така што се потребни голем број инструменти за да се добие точна мерка на просечната температура. Затоа, за мерење на просечната температура на подводните котлини, звучното мерење е прилично исплатливо. Томографските мерења, исто така, имаат просечна варијабилност во однос на длабочината, бидејќи патеките на зраците кружат низ водниот столб. Реципрочна томографија„Реципрочна томографија“ користи симултани преноси помеѓу два акустични примопредаватели. „Примопредавател“ е инструмент кој вклучува и акустичен извор и приемник. Малите разлики во времето на патување помеѓу реципрочно патувачките сигнали се користат за мерење на океанските струи, бидејќи реципрочните сигнали патуваат со и против струјата. Просекот на овие реципрочни времиња на патување е мерка за температура, при што малите ефекти од океанските струи целосно се отстранети. Температурите на океаните се заклучуваат од збирот на времињата на реципрочно патување, додека струите се заклучуваат од разликата на времињата на реципрочно патување. Општо земено, океанските струи (обично 10 сантиметри по секунда) имаат многу помал ефект врз времето на патување од варијациите на брзината на звукот (обично 5 метри по секунда), така што „еднонасочната“ томографија ја мери температурата до добра апроксимација. ПрименаВо океанот, големи температурни промени може да се случат во временски интервали од минути (внатрешни бранови) до децении (океански климатски промени). Томографијата е употребена за мерење на варијабилноста во овој широк опсег на временски скали и во широк опсег на просторни размери. Томографијата е замислена како мерење на океанската клима користејќи преноси на антиподални растојанија.[3] Томографијата станала вреден метод за набљудување на океаните,[6] користејќи ги одликите на акустичното ширење на долг дострел за да се добијат синоптички мерења на просечната температура или струја на океанот. Една од најраните примени на томографијата во набљудувањето на океаните се случило во 1988-99 година. Соработката помеѓу групите во Институтот за океанографија Скрипс и океанографската институција Вудс Хол распоредила томографска низа од шест елементи во абисалната рамнина на вителот на Гренландското Море за да го проучи формирањето на длабоки води и циркулацијата на вителот.[7][8] Други апликации вклучуваат мерење на плимата и осеката на океаните,[9][10] и проценка на динамиката на мезоскалата на океанот со комбинирање на томографија, сателитска височина и податоци на самото место со океански динамички модели.[11] Покрај децениските мерења добиени во Северниот Тихи Океан, звучната топломерија е употребена за мерење на температурните промени на горните слоеви на котлините на Северноледениот Океан,[12] што продолжува да биде област од активен интерес.[13] Звучната топломерија, исто така, неодамна била искористена за да се утврдат промените на температурите на океаните во глобално ниво користејќи податоци од акустичните импулси испратени од едниот до другиот крај на земјата.[14][15] Звучна топломеријаЗвучната топломерија е идеја за набљудување на светските подводни котлини, а особено на океанската клима, користејќи акустични преноси преку котлината. „Топломерија“, наместо „томографија“, се користело за да се наведат мерења во слив или глобални размери. Прототип на мерења на температурата се направени во северниот тихоокеански басен и низ Северноледениот слив.[1] Почнувајќи од 1983 година, Џон Спизбергер од океанографската институција Вудс Хол и Тед Бирдсал и Курт Мецгер од Универзитетот во Мичиген развиле употреба на звук за да заклучат информации за големите температури на океанот, а особено да се обидат да детектираат глобално затоплување. во океанот. Оваа група пренесувала звуци од Оаху кои биле снимени на околу десет приемници стационирани околу работ на Тихиот Океан на растојанија од 4,000 километри.[16][17] Овие експерименти покажале дека промените во температурата може да се измерат со точност од околу 20 милистепени. Спизбергери неговите соработници не откриле глобално затоплување. Наместо тоа, тие откриле дека други природни климатски флуктуации, како што е Ел Нињо, се делумно одговорни за значителни флуктуации на температурата што можеби ги прикривале сите побавни и помали трендови што можеби се појавиле од глобалното затоплување.[18] Програмата „Звучна топломерија на океанската клима“ (ATOC) била имплементирана во северниот дел на Тихиот Океан, со акустични преноси од 1996 година до есента 2006 година. Мерењата завршиле кога завршиле и договорените еколошки протоколи. Децениското распоредување на звучниот извор покажало дека набљудувањата се одржливи дури и со скромен буџет. Преносите се потврдени за да обезбедат точно мерење на температурата на океаните на акустичните патеки, со несигурности кои се далеку помали од кој било друг пристап за мерење на температурата на океанот.[19][20] Повторливите земјотреси кои дејствуваат како природни акустични извори исто така се користени во звучна топломерија, што може да биде особено корисно за заклучување на температурната варијабилност во длабокиот океан кој во моментов е слабо земен од инструментите на самото место.[21] Звучни преноси и морски цицачиПроектот ATOC бил вклучен во прашања во врска со ефектите на акустиката врз морските цицачи (на пр. китови, морски лавови, итн.).[22][23][24] Јавната дискусија била комплицирана од технички прашања од различни дисциплини (физичка океанографија, акустика, биологија на морски цицачи итн.) што го отежнува разбирањето на ефектите на акустиката врз морските цицачи за експертите, а камоли за пошироката јавност. Многу од прашањата во врска со акустиката во океанот и нивните ефекти врз морските цицачи биле непознати. Конечно, првично постоеле различни јавни заблуди, како што е конфузијата на дефиницијата за нивото на звук во воздухот наспроти нивото на звук во водата. Ако даден број на децибели во водата се толкуваат како децибели во воздухот, нивото на звукот ќе изгледа како да е поголемо од она што навистина е - во еден момент звучните нивоа на ATOC биле погрешно интерпретирани како толку гласни што сигналите би убиле 500.000 животни.[5][25] Употребената звучна моќност, 250 W, била споредлива со оние направени од сини или перки китови,[24] иако тие китови вокализираат на многу пониски честоти. Океанот носи звук толку ефикасно што звуците не мора да бидат толку гласни за да ги преминат подводните котлини. Други фактори во контроверзноста биле обемната историја на активизам во однос на морските цицачи, кои произлегуваат од тековниот конфликт со китови, и сочувството што голем дел од јавноста го чувствува кон морските цицачи.[25] Како резултат на оваа контроверзност, програмата ATOC спровела студија од 6 милиони долари за ефектите од акустичните преноси врз различни морски цицачи. Акустичниот извор бил поставен на дното длабоко околу половина милја, па оттука морските цицачи, кои се врзани за површината, генерално биле подалеку од половина милја од изворот. Нивото на изворот било скромно, помало од нивото на звукот на големите китови, а работниот циклус бил 2% (т.е. звукот е само 2% од денот).[26] По шест години студија, официјалниот, формален заклучок од оваа студија бил дека преносите на ATOC „немаат биолошки значајни ефекти“.[24][27][28] Другите акустични активности во океанот можеби не се толку доброќудни што се однесува до морските цицачи. Различни типови вештачки звуци се проучувани како потенцијални закани за морските цицачи, како што се истрели од воздушни пиштоли за геофизички истражувања,[29] или преноси од американската морнарица за различни цели.[30] Вистинската закана зависи од различни фактори надвор од нивото на бучава: звучна честота, честота и времетраење на преносот, природата на акустичниот сигнал (на пр., ненадеен пулс или кодирана секвенца), длабочината на изворот на звукот, насоченоста на звукот извор, длабочина на вода и локална топографија, одек итн. Видови пренесени звучни сигналиТомографските преноси се состојат од долги кодирани сигнали (на пр. „m-секвенци“) кои траат 30 секунди или повеќе. Честотите што се користат се движат од 50 до 1000 Hz и моќноста на изворот се движат од 100 до 250 W, во зависност од конкретните цели на мерењата. Со прецизно тајмирање, како на пример од ГПС, времето на патување може да се измери со номинална точност од 1 милисекунда. Додека овие преноси се слушаат во близина на изворот, надвор од опсегот од неколку километри, сигналите обично се под нивоата на амбиентална бучава, што бара софистицирани техники за обработка на сигнал со широк спектар за да се повратат. Наводи
Дополнително читање
Надворешни врски
|
Portal di Ensiklopedia Dunia