五乗数算術演算および代数演算において、五乗数(ごじょうすう、英語: fifth power)とは、ある数値 n の5乗となる数値、すなわち、底を n 、冪指数を 5 とする冪乗( n5 = n × n × n × n × n )である。 数値 n の5乗は、n の4乗に n 自体を掛けたものに等しく、また、n の3乗に n の2乗を掛けたものに等しい。 自然数の5乗自然数の5乗を小さい順に列記すると、次のようになる。
性質10を底とする整数 n の5乗の最小の桁の値は、n の最小の桁の値と同じである。 また、n が奇数のとき、n⁵ - n は240で割り切れることが知られている。 五乗数の列の第4階差数列は公差 120 の等差数列であり、第5階差数列は定数列 120である。したがって五乗数の列は5階等差数列である。 アーベル–ルフィニの定理によれば、未知数の5乗を最大の冪乗とする代数方程式の解に対する一般的な代数式(冪根で表される式)は存在しない。5乗は、これが当てはまる最低の冪指数である。 5乗は、k − 1 個の k 乗数の和を1個の k 乗数で表すことができる冪指数 k のうちの1つで(もう1つは4乗)、オイラー予想に反例を与える。 具体的には、以下の例がある。
関連項目脚注
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia