У арыфметыцы размах[1] набору, рада або выбаркі даных вызначаецца як розніца паміж найбольшым і найменшым значэннем,[2] або як найбольшая розніца паміж максімумам і мінімумам выбаркі.[3] Ён выражаецца ў тых жа адзінках вымярэння, што і ў арыгінальных даных.
Тым жа часам у апісальнай статыстыцы, канцэпцыя размаху мае больш складанае значэнне. Так, размахам можна назваць найменшы інтэрвал, які ўключае ўсе даныя выбаркі і адзначае статыстычную дысперсію. З-за таго, што размах залежыць толькі ад двух крайніх значэнняў (назіранняў), ён найбольш выкарыстоўваецца для апісання дысперсіі невялікіх набораў даных.
Непарыўныя незалежныя ідэнтычна размеркаваныя (НІР) выпадковыя велічыні
Размах мае інтэгральную функцыю размеркавання[4][5]
.
(пры ; калі , то ).
Гумбель адзначаў, што «прыгажосць гэтай формулы цалкам псуецца тым фактам, што агулам мы не можам выразіць з дапамогай і што лікавае інтэграванне задоўгае і ўтомнае».[4]
Калі размеркаванне кожнай абмежаваны справа (або злева), тады асімптатычнае размеркаванне размаху роўна асімптатычнаму размеркаванню найвялікшай (найменшай) велічыні. Для больш агульных размеркаванняў асімптатычнае размеркаванне можа быць выражана як функцыя Беселя.[4]
Непарыўныя незалежныя неідэнтычна размеркаваныя (ННР) выпадковыя велічыні
Для непарыўных незалежных неідэнтычна размеркаваных выпадковых велічынь з функцыямі размеркавання і функцыямі шчыльнасці імавернасці , размах мае функцыю размеркавання[5]
Размах — гэта спецыфічны прыклад парадкавай статыстыкі. У прыватнасці, размах — гэта лінейная функцыя парадкавай статыстыкі, якая ўносіць яго ў поле L-ацэньвання.
↑George Woodbury (2001). An Introduction to Statistics. p. 74. ISBN0534377556.
↑Ю. H. Макарычев, Н. Г. Миндюк, С. Б. Суворова, И. С. Шлыкова (2007). "3". Изучение алгебры в 7—9 классах. Пособие для учителей(руск.). ISBN978-5-09-024920-1.{{cite book}}: Папярэджанні CS1: розныя назвы: authors list (спасылка)
↑ абEvans, D. L.; Leemis, L. M.; Drew, J. H. (2006). "The Distribution of Order Statistics for Discrete Random Variables with Applications to Bootstrapping". INFORMS Journal on Computing. 18: 19. doi:10.1287/ijoc.1040.0105.
↑ абAbdel-Aty, S. H. (1954). "Ordered variables in discontinuous distributions". Statistica Neerlandica. 8 (2): 61–82. doi:10.1111/j.1467-9574.1954.tb00442.x.
↑Siotani, M. (1956). "Order statistics for discrete case with a numerical application to the binomial distribution". Annals of the Institute of Statistical Mathematics. 8: 95–96. doi:10.1007/BF02863574.