Архимедово телоРомбоусечённый икосододекаэдр является самым большим архимедовым телом по объёму (для единичной длины ребра), а также имеющим больше всех других вершин и рёбер.
Псевдоромбокубооктаэдр имеет одну вершинную фигуру, 3.4.4.4, но с поворотом одного квадратного купола. В отличие от (не повёрнутого) ромбокубооктаэдра, фигура не является вершинно транзитивной.
Архиме́дово те́ло (или архиме́дов многогра́нник) — выпуклый многогранник, имеющий в качестве граней два или более типов правильных многоугольников, примыкающих к идентичным вершинам. Здесь «идентичные вершины» означают, что для любых двух вершин существует изометрия всего тела, переводящая одну вершину в другую. Архимедовы тела отличаются от платоновых тел (правильных многогранников), которые состоят только из одного типа многоугольников в одинаковых вершинах, и от многогранников Джонсона, правильные многоугольные грани которого принадлежат различным типам вершин. Иногда только требуется, чтобы грани, прилегающие к одной вершине, были изометричными граням при другой вершине. Эта разница в определениях определяет, считается ли удлинённый квадратный гиробикупол (псевдоромбокубооктаэдр) архимедовым телом или многогранником Джонсона — это единственный выпуклый многогранник, в котором многоугольные грани примыкают к вершине одним и тем же способом в каждой вершине, но многогранник не имеет глобальную симметрию, которая бы переводила любую вершину в любую другую. Основываясь на существовании псевдоромбокубооктаэдра, Грюнбаум[1] предложил терминологическое различие, в котором архимедово тело определяется как имеющее одну и ту же вершинную фигуру в каждой вершине (включая удлинённый квадратный гиробикупол), в то время как однородный многогранник определяется как тело, у которого любая вершина симметрична любой другой (что исключает гиробикупол). Призмы и антипризмы, группами симметрий которых являются диэдрические группы, обычно не считаются архимедовыми телами, несмотря на то, что они подпадают под определение, данное выше. С этим ограничением существует только конечное число архимедовых тел. Все тела, кроме удлинённого квадратного гирокупола, можно получить построениями Витхоффа из платоновых тел с помощью тетраэдральной, октаэдральной[англ.] и икосаэдральной симметрий. Источник названияАрхимедовы тела названы по имени Архимеда, обсуждавшего их в ныне потерянной работе. Папп ссылается на эту работу и утверждает, что Архимед перечислил 13 многогранников[1]. Во времена Возрождения художники и математики ценили чистые формы и переоткрыли их все. Эти исследования были почти полностью закончены около 1620 года Иоганном Кеплером[2], который определил понятия призм, антипризм и невыпуклых тел, известных как тела Кеплера — Пуансо. Кеплер, возможно, нашёл также удлинённый квадратный гиробикупол (псевдоромбокубооктаэдр) — по меньшей мере, он утверждал, что имеется 14 архимедовых тел. Однако его опубликованные перечисления включают только 13 однородных многогранников, и первое ясное утверждение о существовании псевдоромбоикосаэдра было сделано в 1905 Дунканом Соммервилем[англ.][1]. КлассификацияСуществует 13 архимедовых тел (не считая удлинённого квадратного гиробикупола; 15, если учитывать зеркальные отражения двух энантиоморфов, которые ниже перечислены отдельно). Здесь вершинная конфигурация относится к типам правильных многоугольников, которые примыкают к вершине. Например, вершинная конфигурация (4,6,8) означает, что квадрат, шестиугольник и восьмиугольник встречаются в вершине (порядок перечисления берётся по часовой стрелке относительно вершины).
Некоторые определения полуправильных многогранников включают ещё одно тело — удлинённый квадратный гиробикупол или «псевдоромбокубооктаэдр»[3]. СвойстваЧисло вершин равно отношению 720° к угловому дефекту при вершине. Кубоктаэдр и икосододекаэдр являются рёберно однородными[англ.] и называются квазиправильными. Двойственные многогранники архимедовых тел называются каталановыми телами. Вместе с бипирамидами и трапецоэдрами они являются однородными по граням телами с правильными вершинами. ХиральностьПлосконосый куб и плосконосый додекаэдр хиральны, поскольку они появляются в левостороннем и правостороннем вариантах. Если что-то имеет несколько видов, которые являются трёхмерным зеркальным отражением друг друга, эти формы называют энантиоморфами (это название применяется также для некоторых форм химических соединений). Построение архимедовых тел![]() Различные архимедовы и платоновы тела могут быть получены друг из друга с помощью пригоршни операций. Начиная с платоновых тел можно использовать операцию усечения углов. Для сохранения симметрии усечение делается плоскостью, перпендикулярной прямой, соединяющей угол с центром многоугольника. В зависимости от того, насколько глубоко проводится усечение (см. таблицу ниже), получим различные платоновы и архимедовы (и другие) тела. Растяжение или скашивание осуществляется путём движения граней (в направлении) от центра (на одно и то же расстояние, чтобы сохранить симметрию) и созданием, затем, выпуклой оболочки. Расширение с поворотом осуществляется также вращением граней, это ломает прямоугольники, возникающие на местах рёбер, на треугольники. Последнее построение, которое мы здесь приводим, это усечение как углов, так и рёбер. Если игнорировать масштабирование, расширение можно также рассматривать как усечение углов и рёбер, но с определённым отношением между усечениями углов и рёбер.
Заметим двойственность между кубом и октаэдром и между додекаэдром и икосаэдром. Также, частично вследствие самодвойственности тетраэдра, только одно архимедово тело имеет только одну тетраэдральную симметрию. См. также
Примечания
Литература
Ссылки
|
Portal di Ensiklopedia Dunia