செனான்(Xenon) என்பது Xe என்ற மூலக்கூற்று வாய்ப்பாடு கொண்ட ஒரு கனிம வேதியியல் சேர்மம் ஆகும். புவியின் வளிமண்டலத்தில் செனான் வாயு நிறமற்றதாகவும் அடர்த்தி மிகுந்ததாகவும் நெடியற்ற மந்த வாயுவாகவும் ஒரு சிறிய அளவில் காணப்படுகிறது[2], செனான் ஒரு மந்த வாயுவாகக் காணப்பட்டாலும் சில வேதிவினைகளில் பங்கு கொள்கிறது. செனான் எக்சாபுளோரோபிளாட்டினேட்டு போன்ற சேர்மங்கள் இவ்வினைகளில் தயாரிக்கப்படுகின்றன. செனான் எக்சாபுளோரோபிளாட்டினேட்டு முதன் முதலில் தயாரிக்கப்பட்ட மந்த வாயுச்சேர்மமாகும்[3][4]. இவ்வாயுவை மின்கலன் விளக்காகவும்[5] ஒளிவட்ட விளக்காகவும் மற்றும் ஒரு மயக்க மருந்தாகவும் பயன்படுத்துகிறார்கள்[6]
எக்சைமர் எனப்படும் முதலாவது கிளர்வுற்ற ஈரணு மூலக்கூறு சீரொளி வடிவமைப்பில் செனானின் இருபடி (Xe2) கிளர்வொளியாகும் ஊடகத்தில் பயன்படுத்தப்பட்டது. தொடக்கக் கால சீரொளி வடிவங்களில் செனான் மின்கல விளக்குகள் காற்றழுத்த விசைக்குழாய்களாகப் பயன்படுத்தப்பட்டன. கோட்பாட்டு ரீதியில் பல்வீனமாக இடைவினைபுரியும் பெருந்துகள்கள் பற்றிய ஆய்வுகளில் செனான் பயன்படுத்தப்படுகிறது [7]. விண்கலங்களின் உந்து அமைப்பில் அயனி அமுக்கியாகவும் இதைப் பயன்படுத்துகிறார்கள்.
இயற்கையாகத் தோன்றும் செனான் எட்டு நிலையான ஐசோடோப்புகளைக் கொண்டுள்ளது. நாற்பதுக்கும் மேற்பட்ட நிலையற்ற செனான் ஐசோடோப்புகள் கதிரியக்க சிதைவுக்கு உட்படுகின்றன. சூரிய மண்டலத்தைப் பற்றிய ஆரம்பகால வரலாற்றைப் படிப்பதற்கான முக்கியமான ஒரு கருவியாக செனானின் ஐசோடோப்பு விகிதங்கள் கருதப்படுகின்றன . அணுக்கரு பிளவில் உருவாகும் அயோடின்-135 பீட்டா சிதைவு அடைவதால் கதிரியக்க செனான்-135 உற்பத்தி செய்யப்படுகிறது, அணுக்கரு உலைகளில் தேவையற்ற நியூட்ரான்களை உறிஞ்சிக் கொள்ளும் மிக முக்கியமான நியூட்ரான் உறிஞ்சியாக இது பயன்படுகிறது .
செனான் வளிமம் ஒளிப்படக்கருவிகளில் அதிக வெளிச்சம் தரும் கருவிகளில் பயன்படுகின்றது.[5] செனான் லேசர் செய்யப்படும் பொருள்களில் முக்கியப் பொருளாக உள்ளது.[8] உறள்மக் கட்டிருப்புப் பிணைவு (Inertial Confinement Fusion),[9] அரிதாக நுண்ணுயிர்க்கொல்லி விளக்குகள்,[10] சில தோலியல் பயன்பாடுகள்[11] போன்றவற்றுக்கான லேசர் ஆற்றலை உருவாக்குவது இதற்கான சில எடுத்துக்காட்டுக்கள்.
செனான் வளிமம், மருத்துவப் பயனுக்காக மயக்கம் தரும் பொருளாகப் பயன்படுகின்றது, ஆனால் இதன் விலை அதிகம். 2005 ஆண்டில் 99.99% தூய செனான் வளிமம் ஒரு லிட்டருக்கு ஐக்கிய அமெரிக்க டாலர் $ 10 ஆகும் [12] என்றாலும் ஐரோப்பாவில் செனான் தந்து மயக்கம் அளிக்கும் இயந்திரங்கள் வரவிருக்கின்றன [13]
விண்வெளி ஊர்திகளில் மின்மவணு உந்துகள்ளாகப் பயன்படுத்துவதற்கு செனான் பயன் படுகின்றது. உயர்ந்த அணுவெடை கொண்டு இருப்பதாலும், அறை வெப்பநிலைக்கு அருகே உயர் அழுத்த நிலையில் நீர்மமாக ஆக்கவல்லதாலும், வேதியியல் வினை அதிகம் கொள்ளாததாலும், பிற பகுதிகளுக்கு அரிப்பு ஏதும் உண்டாக்காமல் இருப்பதாலும் செனான் விரும்பப்படுகின்றது [14] நாசாவின் டோன் விண்கலம் செனானை அதன் அயனி உந்துகைப் பொறிகளில் பயன்படுத்துகின்றது.[15]
வரலாறு
இசுக்காட்லாந்தைச் சேர்ந்த வேதியியலாளர் வில்லியம் ராம்சேவும் ஆங்கிலேய வேதியியலாளர் மாரிசு டிராவெர்சும் இங்கிலாந்தில் 1898 செப்டம்பரில் செனான் வாயுவைக் கண்டுபிடித்தனர் [16]. கிரிப்டானையும் நியானையும் அவர்கள் கண்டுபிடித்த பின்னர் திரவக் காற்றிலிருந்து ஆவியாகும் கூறுகளில் காணப்பட்ட கசடாக செனானை அவர்கள் கண்டறிந்தார்கள் [17][18]. அந்நியன் அல்லது தனியன் என்னும் பொருள் கொண்ட கிரேக்கச் சொல்லை அடிப்படையாகக் கொண்டு செனான் என்னும் பெயரை இராம்சே இந்த வளிமத்துக்கு பெயராகப் பரிந்துரைத்தார் [19][20]. வளிமண்டலத்தில் செனானின் அளவு 20 மில்லியனில் ஒரு பங்கு இருக்கலாம் என 1902 ஆம் ஆண்டில் இராம்சே மதிப்பிட்டார் [21].
1930 களின் போது, அமெரிக்க பொறியியலாளரான அரோல்டு எட்கர்டன் அதிக வேக புகைப்படத்திற்கான குறிப்பொளி தொழில்நுட்பத்தை ஆய்வு செய்யத் தொடங்கினார். இதன் விளைவாக செனான் மின்வெட்டொளி விளக்கு கண்டறியப்பட்டது. இவ்விளக்கில் செனான் வாயு நிரப்பப்பட்ட குழாயில் மின்சாரம் செலுத்தப்பட்டு ஒளி உண்டாக்கப்படுகிறது. 1934 இல் எட்கர்டினால் இம்முறையைப் பயன்படுத்தி ஒரு மைக்ரோ நொடிக்குச் சுருக்கமாக மின்வெட்டுகளை உருவாக்க முடிந்தது[5][22][23].
ஆழ்கடலில் மூழ்கி பணிபுரிபவர்களுக்கு வெறி பிடிப்பதற்கான காரணங்களை 1939 ஆம் ஆண்டில், அமெரிக்க மருத்துவர் ஆல்பர்ட்டு ஆர் பெங்கி சூனியர் ஆராயத் தொடங்கினார். சுவாசக் கலவகளை மாற்றி அம் மாறுபாடுகளின் விளைவுகளை சோதித்துப் பார்த்தார், ஆழமான கடல் பகுதிகளில் இம்மாற்றம் உணரக்கூடியதாக இருப்பதையும் இவர் கண்டுபிடித்தார். இறுதியாக செனான் வாயு ஒரு மயக்கமூட்டியாகச் செயற்படுகிறது என்பதை கண்டறிந்தார். 1941 ஆம் ஆண்டில் உருசிய நச்சியல் விஞ்ஞானி நிகோலய் வி. லாசரேவ் செனான் மயக்க மருந்து குறித்து ஆய்வு செய்திருந்தாலும், செனான் மயக்க மருந்தை உறுதிசெய்த முதல் வெளியீட்டு அறிக்கை 1946 ஆம் ஆண்டில் அமெரிக்க மருத்துவ ஆராய்ச்சியாளர் யோன் எச். லாரன்சு என்பவரால் வெளியிடப்பட்டது. எலிகளில் பரிசோதித்தது இவர் அந்த அறிக்கையை வெளியிட்டார். 1951 ஆம் ஆண்டில் அமெரிக்க மயக்கவியல் நிபுணர் சுடூவர்ட்டு சி. கல்லென் செனான் வாயுவை இரண்டு நோயாளிகளுக்கு மயக்கமருந்தாகக் கொடுத்து அறுவைச் சிகிச்சையில் வெற்றிகரமாகப் பயன்படுத்தினார் [24]
செனான் மற்றும் இதர மந்த வாயுக்கள் யாவும் நீண்ட காலமாக முற்றிலும் வேதியியல் ரீதியாக வினைபுரிந்து சேர்மங்களை உருவாக்கும் சக்தியற்றவை என்று கருதப்பட்டன. செனான் எக்சாபுளோரோபிளாட்டினேட்டு என்ற முதலாவது மந்தவாயுச் சேர்மம் 1962 ஆம் ஆண்டு மார்ச்சு 23 இல் கண்டறியப்பட்டது. இதன்பிறகு பல மந்தவாயுச் சேர்மங்கள் கண்டறியப்பட்டன. 1971 ஆம் ஆண்டு கணக்கெடுப்பின்படி 80 செனான் சேர்மங்களுக்கும் மேல் இருப்பதாக அறியப்பட்டுள்ளது.
சேர்மங்கள்
செனான் டெட்ராபுளோரைடுXeF4 படிகங்கள்
செனான் வேதிச் சேர்மங்களை உருவாக்க முடியும் என்று 1962 ஆம் ஆண்டில் நீல் பார்ட்லெட்டு கண்டுபிடித்த பிறகு, அதிக எண்ணிக்கையிலான செனான் சேர்மங்கள் கண்டுபிடிக்கப்பட்டு விவரிக்கப்பட்டுள்ளன. ஏறக்குறைய அறியப்பட்ட அனைத்து செனான் சேர்மங்களும் மின்னெதிர் அணுக்களான புளோரின் அல்லது ஆக்சிசனைக் கொண்டுள்ளன. ஒவ்வொரு ஆக்சிசனேற்ற நிலையிலும் செனானின் வேதியியல் பண்பு உடனடியாக குறைந்த ஆக்சிசனேற்ற நிலையில் உள்ள அண்டை உறுப்பு அயோடினுடன் ஒத்திருக்கிறது.
ஆலைடுகள்
XeF2, XeF4, மற்றும் XeF6 என்ற வாய்ப்பாடுகளைக் கொண்ட மூன்று செனான் புளோரைடுகள் அறியப்படுகின்றன. XeF நிலைப்புத் தன்மையற்றது என கோட்பாட்டு வேதியியல் கூறுகிறது. கிட்டத்தட்ட அனைத்து செனான் சேர்மங்கள் தயாரிப்பு முறைக்கும் இவையே முக்கியமான கருத்துகளாகும் [25].
புளோரின் மற்றும் செனான் வாயுக் கலவை புற ஊதா கதிரில் வெளிப்படும்போது திண்மநிலை செனான் டைபுளோரைடு படிகம் தோன்றுகிறது [26]. சாதாரண பகல் ஒளியில் காணப்படும் புற ஊதா ஒளியே இவ்வினைக்கு போதுமானதாகும்[27]. NiF2, வினையூக்கியின் முன்னிலையில் செனான் டைபுளோரைடை உயர் வெப்பநிலையில் நீண்ட நேரத்திற்கு சூடுபடுத்தும்போது XeF6 உருவாகிறது[28]. சோடியம் புளோரைடு முன்னிலையில் செனான் எக்சாபுளோரைடை வெப்பச்சிதைவுக்கு உட்படுத்தினால் செனான் டெட்ராபுளோரைடு உருவாகிறது[29]..
செனான் புளோரைடுகள் புளோரைடு ஏற்பிகள் மற்றும் புளோரைடு வழங்கிகள் என்ற இரண்டு பண்புகளையும் வெளிப்படுத்துகின்றன. இவை XeF+ மற்றும் Xe2F+3 நேர்மின் அயனிகள் கொண்ட உப்புகளாகவும் XeF−5, XeF−7, மற்றும் XeF2−8 எதிர்மின் அயனிகள் கொண்ட உப்புகளாகவும் உருவாகின்றன, XeF2 சேர்மத்தை செனான் வாயுவைக் கொண்டு ஒடுக்குதல் வினைக்கு உட்படுத்தினால் பச்சை நிற பாராகாந்தப் பண்புடைய Xe+2 நேர்மின் அயனி உருவாகிறது [30].
XeF2 இடைநிலை உலோக அயனிகளுடன் சேர்ந்து ஒருங்கிணைவு அணைவுச் சேர்மங்களையும் தருகிறது. ஏறக்குறைய முப்பதுக்கும் மேற்பட்ட அனைவுச் சேர்மங்கள் கண்டு பிடிக்கப்பட்டு வரையறுக்கப்பட்டுள்ளன [28].
செனான் டைகுளோரைடு தவிர்த்த மற்ற செனான் புளோரைடுகள் அனைத்தும் வரையறுக்கப்பட்டுள்ளன. மற்ற செனான் ஆலைடுகள் ஏதும் அறியப்படவில்லை.செனான், புளோரின், சிலிக்கான் அல்லது கார்பன் டெட்ராகுளோரைடுகளின்[31] கலவையின் உயர் அலைவரிசை கதிர்வீச்சு செனான் டைகுளோரைடை உருவாக்குகிறது. இது ஒரு வெப்பங்கொள்வினையாகும். நிறமற்ற படிக சேர்மம் 80 பாகை செல்சியசு வெப்பநிலையில் தனிமங்களாக சிதைவடைகிறது.
இருப்பினும் Xe அணுக்கள் மற்றும் Cl2 மூலக்கூறுகள் வெறுமனே பலவீனமாகப் பிணைக்கப்பட்ட வாண்டர் வால்சு மூலக்கூறுகளால் XeCl2 உருவாகியுள்ளது. வாண்டர் வால்சு அணைவு மூலக்கூறுகளைக்காட்டிலும் நேர்கோட்டு XeCl2 குறைவான நிலைப்புத்தன்மையை கொண்டுள்ளது.
ஆக்சைடுகளும் ஆக்சோ ஆலைடுகளும்
செனான் டையாக்சைடு (XeO2), செனான் டிரையாக்சைடு (XeO3) செனான் டெட்ராக்சைடு (XeO4) , என்ற மூன்று செனான் ஆக்சைடுகள் அறியப்படுகின்றன. செனான் டிரையாக்சைடு, செனான் டெட்ராக்சைடு இரண்டும் வலிமையான ஆக்சிசனேற்றும் முகவர்களாகும், இவை வெடிக்கும் இயல்புடையவையாகும் என்பதால் ஆபத்தானவையாகக் கருதப்படுகின்றன. செனான் டையாக்சைடு 2011 ஆம் ஆண்டு கண்டறியப்பட்டது. இதன் அணைவு எண் 4 ஆகும் [32].செனான் டெட்ராபுளோரைடை குளிர்ந்த பனிக்கட்டியில் செலுத்தினால் செனான் டையாக்சைடு உருவாகிறது [33]. இதன் படிகக்கட்டமைப்பு சிலிக்கேட்டு கனிமங்களில் உள்ள சிலிக்கானை இடப்பெயர்ச்சி செய்ய அனுமதிக்கிறது. திண்ம ஆர்கானில் அகச்சிகப்பு நிறமாலையியல் ஆய்வில் XeOO+ நேர்மின் அயனி அடையாளம் காணப்பட்டது.
செனான் நேரடியாக ஆக்சிசனுடன் வினைபுரியாது. செனான் எக்சாபுளோரைடை நீராற்பகுப்புக்கு உட்படுத்தினால் செனான் டிரையாக்சைடு தோன்றுகிறது [34].
XeF 6 + 3 H 2O → XeO 3 + 6 HF
XeO 3 ஓரு பலவீனமான அமிலமாகும். காரத்தில் இது கரைந்து நிலைப்புத்தன்மையற்ற செனேட்டுகள் உருவாகின்றன. செனேட்டு உப்புகளில் HXeO− 4 எதிர்மின் அயனிகள் உள்ளன. நிலைப்புத்தன்மையற்ற இவை எளிதில் விகிதச்சமமாதலின்றி சிதைந்து செனான் வாயுவாக மாறுகின்றன. பெர்செனேட்டு உப்புகளில் XeO4− 6 எதிர்மின் அயனி உள்ளது.[35]
பேரியம் செனேட்டு அடர் கந்தக அமிலத்துடன் சேர்த்து சூடுபடுத்தும் போது வாயுநிலை செனான் டெட்ராக்சைடு உருவாகிறது:[31]
Ba 2XeO 6 + 2 H 2SO 4 → 2 BaSO 4 + 2 H 2O + XeO 4
வேதிச் சிதைவை தடுப்பதற்காக உருவாகும் செனான் டெட்ராக்சைடு உடனடியாகக் குளிர்விக்கப்பட்டு வெளிர் மஞ்சள் நிற திண்மமாக மாற்றப்படுகிறது. −35.9 செல்சியசு வெப்பநிலைக்கு மேற்பட்ட வெப்பநிலையில் இது வெடித்து செனான் மற்றும் ஆக்சிசன் வாயுக்களாகச் சிதைவடைகிறது.
XeOF 2, செனான் ஆக்சிடெட்ராபுளோரைடு, XeO 2F 2, மற்றும் XeO 3F 2 உள்ளிட்ட எண்ணற்ற செனான் ஆக்சிபுளோரைடுகள் அறியப்படுகின்றன. தாழ் வெப்பநிலையில் ஆக்சிசன் டைபுளோரைடுடன் செனான் வாயு வினைபுரிவதால் XeOF 2 சேர்மத்தை தயாரிக்க முடியும்.
செனான் டெட்ராபுளோரைடை பகுதிநீராற்பகுப்பு செய்தும் இதை தயாரிக்க முடியும். விகிதச்சம்மின்றி -20 செல்சியசு வெப்பநிலையில் இது XeF 2 மற்றும் XeO 2F 2 ஆக சிதைகிறது.[36]XeOF 4 சேர்மமும் XeF 6 இன் பகுதி நீராற்பகுப்பால் உருவாகிறது.[37] அல்லது XeF 6 சோடியம் பெர்செனேட்டுடன் ( Na 4XeO 6) வினை புரிவதால் உண்டாகிறது. இரண்டாவது வினையில் சிறிதளவு XeO 3F 2 உருவாகிறது. XeOF 4 சீசியம் புளோரைடுடன் வினை புரிந்து XeOF− 5 எதிர்மின் அயனி உருவாகிறது.[36][38] இதேபோல XeOF3 பொட்டாசியம் புளோரைடு, ருபீடியம் புளோரைடு, சீசியம் புளோரைடு போன்ற கார உலோக புளோரைடுகளுடன் வினைபுரிந்து XeOF− 4 எதிர்மின் அயனி உருவாகிறது.[39]
மேற்கோள்கள்
↑"Section 4, Properties of the Elements and Inorganic Compounds; Melting, boiling, triple, and critical temperatures of the elements". CRC Handbook of Chemistry and Physics (85th edition ed.). Boca Raton, Florida: CRC Press. 2005. {{cite book}}: |edition= has extra text (help)
↑Staff (2007). "Xenon". Columbia Electronic Encyclopedia (6th ed.). Columbia University Press. Retrieved 2007-10-23.
↑Baltás, E.; Csoma, Z.; Bodai, L.; Ignácz, F.; Dobozy, A.; Kemény, L. (2003). "A xenon-iodine electric discharge bactericidal lamp". Technical Physics Letters29 (10): 871-872.
↑Shuaibov, A.; Shimon, L.; Grabovaya, I. (2006). "Treatment of atopic dermatitis with the xenon chloride excimer laser". Journal of the European Academy of Dermatology and Venereology20 (6): 657-660.
↑Gagnon, Steve. "It's Elemental – Xenon". Thomas Jefferson National Accelerator Facility. Retrieved 2007-06-16.
↑Anonymous (1904). Daniel Coit Gilman; Harry Thurston Peck; Frank Moore Colby (eds.). The New International Encyclopædia. Dodd, Mead and Company. p. 906.
↑Dean H Liskow; Henry F I I I Schaefer; Paul S Bagus; Bowen Liu (1973). "Probable nonexistence of xenon monofluoride as a chemically bound species in the gas phase". J Am Chem Soc95 (12): 4056–4057. doi:10.1021/ja00793a042.
↑Weeks, James L.; Chernick, Cedric; Matheson, Max S. (1962). "Photochemical Preparation of Xenon Difluoride". Journal of the American Chemical Society84 (23): 4612–4613. doi:10.1021/ja00882a063.
↑Streng, L. V.; Streng, A. G. (1965). "Formation of Xenon Difluoride from Xenon and Oxygen Difluoride or Fluorine in Pyrex Glass at Room Temperature". Inorganic Chemistry4 (9): 1370–1371. doi:10.1021/ic50031a035.
↑ 28.028.1Tramšek, Melita; Žemva, Boris (December 5, 2006). "Synthesis, Properties and Chemistry of Xenon(II) Fluoride". Acta Chimica Slovenica53 (2): 105–116. doi:10.1002/chin.200721209.
↑Christe, K. O.; Dixon, D. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Tsai, S. S.; Wilson, W. W. (1995). "On the Structure of the [XeOF5]− Anion and of Heptacoordinated Complex Fluorides Containing One or Two Highly Repulsive Ligands or Sterically Active Free Valence Electron Pairs". Inorg. Chem.34 (7): 1868–1874. doi:10.1021/ic00111a039.
↑Christe, K. O.; Schack, C. J.; Pilipovich, D. (1972). "Chlorine trifluoride oxide. V. Complex formation with Lewis acids and bases". Inorg. Chem.11 (9): 2205–2208. doi:10.1021/ic50115a044.