介值定理
在数学分析中,介值定理(英語:intermediate value theorem,又稱中间值定理)描述了連續函數在兩點之間的連續性:
介值定理首先由伯纳德·波尔查诺在1817年提出和证明,在這個證明中,他附帶證明了波爾查諾-魏爾斯特拉斯定理。 定理![]() 定理敘述中間值定理 — 設 ,且 為一連續函數。則下列敘述成立:
证明先证明第一种情况 ;第二种情况也类似。 设 为所有滿足 的 所構成的集合。由 可知 非空。由於 具有上界 ,故由实数的完备性知 有最小上界 。我们以反证法证明 。
因此。 與實數完備性的關係此定理仰賴於實數完備性,它對有理數不成立。例如函數滿足,但不存在滿足的有理數。 零点定理(波尔查诺定理)零点定理是介值定理的一种特殊情况-如果曲線上兩點的值正負號相反,其間必定存在一個根:
现实世界中的意义介值定理意味着在地球的任何大圆上,温度、压强、海拔、二氧化碳的浓度(或其他任何连续变化的变量),总存在两个对蹠点,在这两个点上该变量的值是相同的。 证明:取f为圆上的任何连续函数。通过圆的中心作一条直线,与圆相交于点A和点B。设d为f(A) − f(B)的差。如果把这条直线旋转180度,将得到值−d。根据介值定理,一定存在某个旋转角,使得d = 0,在这个角度上便有f(A) = f(B)。 这是一个更加一般的结果——博苏克-乌拉姆定理的特殊情况。 参见参考资料
外部链接 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia