Тэрмадынамічныя патэнцыялы
Тэрмадынамічныя патэнцыялы (тэрмадынамічныя функцыі) — характарыстычныя функцыі ў тэрмадынаміцы, змяншэнне якіх у раўнаважных працэсах, якія праходзяць пры пастаянных значэннях адпаведных незалежных параметраў, роўнае карыснай знешняй рабоце. Паняцце тэрмадынамічнага патэнцыялу было распрацавана Гібсам, які ў сваіх працах выкарыстоваў тэрмін «фундаментальныя функцыі». Тэрмін «тэрмадынамічны патэнцыял» быў уведзены П’ерам Дзюгемам . Вылучаюць наступныя тэрмадынамічныя патэнцыялы:
Вызначэнні (для сістэм з пастаянным лікам часціц)Вызначаецца ў адпаведнасці з першым пачаткам тэрмадынамікі, як рознасць паміж колькасцю цеплыні, якая была перададзена сістэме, і работай, выкананай сістэмай над знешнімі целамі: Вызначаецца наступным чынам: Паколькі ў ізабарнам працэсе работа роўная , прырашчэнне энтальпіі ў квазістатычнам ізабарнам працэсе роўнае колькасці цеплыні, атрыманай сістэмаю. Таксама часта называецца проста свабоднай энергіяй. Вызначаецца наступным чынам: дзе — тэмпература, і — энтрапія. Паколькі ў ізатэрмічнам працэсе колькасць цеплыні, атрыманая сістэмай, роўная , то змяншэнне свабоднай энергіі ў квазістатычнам ізатэрмічнам працэсе роўная рабоце, выкананай сістэмай над знешнімі целамі. Таксама называецца энергіяй Гібса, тэрмадынамічным патэнцыялам, свабоднай энергіяй Гібса і нават проста свабоднай энергіяй (што можа прывесці да блытаніны патэнцыялу Гібса са свабоднай энергіяй Гельмгольца): Тэрмадынамічныя патэнцыялы і максімальная работаУнутраная энергія ўяўляе сабой поўную энергію сістэмы. Аднак другі пачатак тэрмадынамікі забараняе ператвараць усю ўнутраную энергію ў работу. Можна паказаць, што максімальная поўная работа (як над асяроддзем, так і над знешнімі целамі), якая можа быць атрымана ад сістэмы ў ізатэрмічным працэсе, роўная змяншэння свабоднай энергіі Гельмгольца ў гэтым працэсе: дзе — свабодная энергія Гельмгольца. У гэтым сэнсе прадстаўляе сабой свабодную энергію, якая дапускае пераўтварэнне ў работу. Астатнюю частку ўнутранай энергіі можна назваць звязанай. У некаторых прыкладаннях даводзіцца адрозніваць поўную і карысную работу. Апошняя прадстаўляе сабой работу сістэмы над знешнімі целамі, выключаючы асяроддзе, у якое яна пагружана. Максімальная карысная работа сістэмы роўная дзе — энергія Гібса. У гэтым сэнсе энергія Гібса таксама з’яўляецца свабоднай. Кананічнае ўраўненне стануЗаданне тэрмадынамічнага патэнцыялу некаторай сістэмы ў пэўнай форме эквівалентна заданню ўраўнення стану гэтай сістэмы. Адпаведныя дыферэнцыялы тэрмадынамічных патэнцыялаў:
Гэтыя выразы матэматычна можна разглядаць як поўныя дыферэнцыялы функцый двух адпаведных незалежных зменных. Таму натуральна разглядаць тэрмадынамічныя патэнцыялы як функцыі: Заданне любой з гэтых чатырох залежнасцей — гэта значыць канкрэтызацыя выгляду функцый , , , — дазваляе атрымаць усю інфармацыю пра ўласцівасці сістэмы. Так, напрыклад, калі нам зададзена ўнутраная энергія як функцыя энтрапіі і аб’ёма , тыя параметры, што засталіся, могуць быць атрыманы дыферэнцыраваннем: Тут індэксы і азначаюць пастаянства другой зменнай, ад якой залежыць функцыя. Гэтыя роўнасці становяцца відавочнымі, калі ўлічыць, што . Заданне аднаго з тэрмадынамічных патэнцыялаў як функцыі адпаведных зменных, як запісана вышэй, уяўляе сабой кананічнае ўраўненне стану сістэмы. Як і іншыя ўраўненні стану, яно справядлівае толькі для станаў тэрмадынамічнай раўнавагі. У нераўнаважных станах гэтыя залежнасці могуць не выконвацца. Метад тэрмадынамічных патэнцыялаў. Суадносіны МаксвелаМетад тэрмадынамічных патэнцыялаў дапамагае ператвараць выразы, у якія ўваходзяць асноўныя тэрмадынамічныя зменныя і тым самым выказваць такія «цяжканазіраемыя» велічыні, як колькасць цеплыні, энтрапію, ўнутраную энергію праз велічыні, якія вымяраюцца — тэмпературу, ціск і аб’ём і іх вытворныя. Разгледзім зноў выраз для поўнага дыферэнцыяла ўнутранай энергіі:
Вядома, што калі змешаныя вытворныя існуюць і бесперапынныя, то яны не залежаць ад парадку дыферэнцыявання, гэта значыць
Але і , таму
Разглядаючы выразы для іншых дыферэнцыялаў, атрымліваем:
Гэтыя суадносіны называюцца суадносінамі Максвела. Заўважым, што яны не выконваюцца ў выпадку разрыўнасці змешаных вытворных, што мае месца пры фазавых пераходах 1-га і 2-га роду. Сістэмы з пераменным лікам часціц. Вялікі тэрмадынамічны патэнцыялХімічны патэнцыял () кампанента вызначаецца як энергія, якую неабходна выдаткаваць для таго, каб дадаць у сістэму бясконца малую малярную колькасць гэтага кампанента. Тады выразы для дыферэнцыялаў тэрмадынамічных патэнцыялаў могуць быць запісаны так:
Паколькі тэрмадынамічныя патэнцыялы павінны быць адытыўнымі функцыямі ліку часціц у сістэме, кананічныя ўраўненні стану прымаюць такі выгляд (з улікам таго, што S і V — адытыўная велічыні, а T і P — не):
І, паколькі , з апошняга выказвання вынікае, што
гэта значыць хімічны патэнцыял — гэта ўдзельны патэнцыял Гібса (на адну часціцу). Для вялікага кананічнага ансамбля (гэта значыць для статыстычнага ансамбля станаў сістэмы з пераменным лікам часціц і збалансаваным хімічным патэнцыялам) можа быць вызначаны вялікі тэрмадынамічны патэнцыял, які злучае свабодную энергію з хімічным патэнцыялам:
Няцяжка праверыць, што так званая звязаная энергія з’яўляецца тэрмадынамічным патэнцыялам для сістэмы, зададзенай з пастаяннымі . Патэнцыялы і тэрмадынамічная раўнавагаУ стане раўнавагі залежнасць тэрмадынамічных патэнцыялаў ад адпаведных зменных вызначаецца кананічным ураўненнем стану гэтай сістэмы. Аднак у станах, выдатных ад раўнаважнага, гэтыя суадносіны губляюць сілу. Тым не менш, для нераўнаважных станаў тэрмадынамічныя патэнцыялы таксама існуюць. Такім чынам, пры фіксаваных значэннях сваіх зменных патэнцыял можа прымаць розныя значэнні, адно з якіх адпавядае стану тэрмадынамічнай раўнавагі. Можна паказаць, што ў стане тэрмадынамічнай раўнавагі адпаведнае значэнне патэнцыялу мінімальнае. Таму раўнавага з’яўляецца ўстойлівай. Ніжэйпрыведзеная табліца паказвае, мінімуму якога патэнцыялу адпавядае стан устойлівай раўнавагі сістэмы з зададзенымі фіксаванымі параметрамі.
Літаратура
Спасылкі
|
Portal di Ensiklopedia Dunia