Feynman, R. P.; Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals. New York: McGraw-Hill. ISBN0-07-020650-3. {{cite book}}: Unknown parameter |lastauthoramp= ignored (|name-list-style= suggested) (help) The historical reference, written by the inventor of the path integral formulation himself and one of his students.
Zinn Justin, Jean (2004). Path Integrals in Quantum Mechanics. Oxford University Press. ISBN0-19-856674-3. A highly readable introduction to the subject.
Schulman, Larry S. (1981). Techniques & Applications of Path Integration. New York: John Wiley & Sons. ISBN0-486-44528-3. A modern reference on the subject.
Ahmad, Ishfaq (1971). Mathematical Integrals in Quantum Nature. The Nucleus. pp. 189–209.
Tomé, Wolfgang A. (1998). Path Integrals on Group Manifolds. Singapore: World Scientific. ISBN981-02-3355-8. Discusses the definition of Path Integrals for systems whose kinematical variables are the generators of a real separable, connected Lie group with irreducible, square integrable representations.
Ryder, Lewis H. (1985). Quantum Field Theory. Cambridge University Press. ISBN0-521-33859-X. Highly readable textbook; introduction to relativistic QFT for particle physics.
Rivers, R.J. (1987). Path Integrals Methods in Quantum Field Theory. Cambridge University Press. ISBN0-521-25979-7.
Mazzucchi, S. (2009). Mathematical Feynman path integrals and their applications. World Scientific. ISBN978-981-283-690-8.
Albeverio, S.; Hoegh-Krohn. R.; Mazzucchi, S. (2008). Mathematical Theory of Feynman Path Integral. Lecture Notes in Mathematics 523. Springer-Verlag. ISBN9783540769569. {{cite book}}: Unknown parameter |lastauthoramp= ignored (|name-list-style= suggested) (help)
Gerald W. Johnson; Michel L. Lapidus (2002). The Feynman Integral and Feynman's Operational Calculus. Oxford Mathematical Monographs. Oxford University Press. ISBN0-19-851572-3. {{cite book}}: Unknown parameter |lastauthoramp= ignored (|name-list-style= suggested) (help)
Harald J.W. Müller-Kirsten (2012). Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral (2nd ed.). Singapore: World Scientific.
Etingof, Pavel (2002). "Geometry and Quantum Field Theory". MIT OpenCourseWare. This course, designed for mathematicians, is a rigorous introduction to perturbative quantum field theory, using the language of functional integrals.