Лодовіко Феррарі першим відкрив розв'язок рівнянь четвертого степеня (1540), проте його робота мала один недолік: він спирався на розв'язок кубічного рівняння, який належав Нікколо Тартальї. Тарталья просив не опубліковувати його, допоки він не надрукує власну книжку[1]. Проте згодом, цей розв'язок було опубліковано разом із розв'язком кубічного рівняння його наставником Джироламо Кардано у книзі «Ars Magna» (1545).
Розв'язок рівнянь вищих степенів (від п'ятого) у загальному випадку не можна подати в радикалах. Але недоведеність цього факту протягом деякого часу підбурювала вчених шукати такі розв'язки. 1824 року було опубліковано теорему Абеля-Руффіні, яка доводила неможливість подати корені рівнянь вищих степенів через радикали у загальному випадку[2].
Застосування
Поліноми високих степенів часто виникають у проблемах математичних методів оптимізації, де, зокрема, доводиться розглядати поліноми четвертого степеня, хоча і не дуже часто.
Рівняння четвертого степеня часто виникають у комп'ютерній графіці і при обчисленні рей-трейсингу (обтікання променів) проти торичних поверхонь, а також поверхонь четвертого порядку і лінійчастих поверхонь[3].
Іншою типовою задачею, у процесі розв'язання якої виникає рівняння четвертого степеня, є пошук перетину двох еліпсів, заданих неканонічно.
Досить часто виникає потреба розв'язувати рівняння четвертого степеня у задачах, які полягають у пошуку умов стійкості динамічних систем. Це пов'язано з тим, що потрібно шукати власні значення матриць монодромії вищезгаданих систем, що у випадку матриць 4 на 4 рівнозначно розв'язанню деякого рівняння четвертого степеня.
Програмна версія стійкого розв'язку рівняння четвертого степеня наведена у Graphics Gems[4].
Розв'язання рівняння четвертого степеня
Окремі випадки
Нульовий вільний член
Якщо то один з коренів а інші можна знайти, поділивши все рівняння на після чого отримавши кубічне рівняння,
Замість u4 виділимо повний квадрат (u2 + α)2, отримаємо
Введемо нову змінну y для утворення повного квадрата у в лівій частині (2), отримаємо
Виберемо змінну y так, щоб у правій частині рівності (3) утворився повний квадрат. Це станеться, якщо в правій частині дискримінант квадратного рівняння відносно u дорівнюватиме нулю:
Потрібно розв'язати це рівняння щодо параметра y. Звівши множники, отримаємо кубічне рівняння:
Розв'язання похідного кубічного рівняння
Рівняння (4) є похідним кубічним рівнянням від рівняння четвертого степеня. Зробивши заміну
Та перепозначивши його коефіцієнти, отримаємо канонічне кубічне рівняння:
Нас задовольнить будь-який розв'язок рівняння (5).
Зауваження: Два знаки отримані з рівняння (7') є залежними, тому є однаковими, а знак — незалежний від них.
Інші методи
Метод невизначених коефіцієнтів
Попереднє розв'язання рівняння четвертого степеня характеризується досить специфічними і неочевидними підстановками, що робить його важким для запам'ятовування.
Розглянемо інше розв'язання, яке базується на методі невизначених коефіцієнтів. Ідея полягає у тому, що потрібно розкласти поліном четвертого степеня у добуток квадратичних поліномів. Нехай
Якщо ми позначимо , то це рівняння перетвориться у кубічне рівняння:
Нехай ми отримали , тоді:
Підставивши отримані параметри p, q, r, s у квадратичні поліноми і розв'язавши їх, ми отримаємо розв'язок вихідного рівняння четвертого степеня. Якщо початкове рівняння було неканонічним, то треба здійснити зворотну заміну.
Чисельний (неаналітичний) розв'язок
Досить ефективним у розв'язанні рівнянь четвертого степеня є метод парабол, що знаходить не лише дійсні (на відміну від методу бісекцій), але й комплексні значення коренів, до того ж цей метод без особливих труднощів розв'язує також рівняння з комплексними коефіцієнтами. Розглянемо цей метод.
Нехай заданий поліном , корені якого треба знайти.
Знайдемо один з цих коренів. Візьмемо три довільні (початкові) точки з комплексної площини, єдина вимога: вони мають бути всі різними, а також різним має бути значення полінома у цих точках (часто беруть точки −1, 0, 1). Розглянемо такі 3 точки: . Оскільки через будь-які 3 точки з різними абсцисами можна провести параболу (яка, щоправда, може вироджуватися у пряму), то проведемо цю параболу. Нехай її рівняння має вигляд . Прирівнявши це рівняння до нуля, ми отримаємо корені (які, взагалі кажучи, є комплексними числами, а тому завжди існують). Візьмемо за те з чисел , яке найменше відрізняється (за модулем) від . Надалі розглядатимемо трійку чисел . І так далі. Варто сказати, що послідовність досить швидко збігається до одного з коренів: відшукання кореня із точністю у 10 значущих цифр може бути досягнуто за 20 кроків.
Після того, як ми знайшли один з коренів (позначимо його через ), слід поділити весь поліном на двочлен . Після цього ми отримаємо кубічний поліном, для якого також можна знайти один з коренів методом парабол. Після відповідного ділення ми отримаємо квадратичний поліном, після розв'язання якого ми отримаємо решту коренів початкового рівняння.
Внаслідок універсальності цього методу, його можна застосовувати не тільки для розв'язання рівнянь четвертого степеня, а й для рівнянь вищих степенів.